کمی‌سازی پاسخ بازدارندگی گرمایی جوانه‌زنی بذر در ارقام مختلف کلزا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

بازدارندگی گرمایی به‌عنوان مهار موقت جوانه‌زنی یک جمعیت بذری در هنگام افزایش دمای خاک به فراتر از دمای بهینه برای جوانه‌زنی تعریف می‌شود. در این مطالعه، مدل زمان‌گرمایی بر مبنای چهار تابع توزیع‌ احتمال نرمال، لوگ‌نرمال، گامبل و ویبول توسعه یافت و سپس پاسخ بازدارندگی گرمایی جوانه‌زنی بذر شش رقم بهاره کلزا (ساری‌گل، RGS003، دلگان، هایولا 401، جری و ژولیوس) با استفاده از این مدل‌ها کمی‌سازی شد. آزمون جوانه‌زنی با 4 تکرار در یازده دمای ثابت 8، 12، 16، 20، 24، 28، 32، 33، 34، 35 و 36 درجه سانتی‌گراد انجام و کل آزمایش 3 مرتبه تکرار شد. مدل جوانه‌زنی-گرمایی نرمال برای ارقام زودرس کلزا (دلگان و هایولا 401) پیش‌بینی بهتری از پیشرفت جوانه‌زنی در طی زمان داشت، درحالی‌که مدل جوانه‌زنی-گرمایی گامبل رفتار جوانه‌زنی بذر ارقام میان‌رس کلزا (ساری‌گل، RGS003، جری و ژولیوس) را با خطای کمتری نسبت به سایر مدل‌ها پیش‌بینی کرد. ارقام زودرس کلزا به‌طور متوسط در دماهای 33.52، 33.99 و 34.37 درجه سانتی‌گراد به ترتیب 5، 50 و 95 درصد بازدارندگی گرمایی جوانه‌زنی نشان دادند. درحالی‌که، بازدارندگی گرمایی موقت جوانه‌زنی در ارقام میان‌رس کلزا در دماهای 33.63، 34.34 و 35.59 درجه سانتی‌گراد به ترتیب به 5، 50 و 95 درصد از حداکثر رسید. این پاسخ بازدارندگی موقت جوانه‌زنی در ارقام کلزا نوعی سازگاری اکولوژیکی بذر محسوب می‌شود و می‌تواند به بقاء آن تحت شرایط متغیر دمای خاک در طی فصل تابستان و ظهور این گیاه به‌عنوان علف‌هرز خودرو در فصل پاییز کمک ‌کند.

کلیدواژه‌ها


Alvarado, V., Bradford, K.J., 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment. 25, 1061-1069.

Andreucci, M.P., Moot, D.J., Black, A.D., Sedcole, R., 2016. A comparison of cardinal temperatures estimated by linear and nonlinear models for germination and bulb growth of forage brassicas. European Journal of Agronomy. 81, 52-63.

Arc, E., Sechet, J., Corbineau, F., Rajjou, L., Marion-Poll, A., 2013. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Frontiers in Plant Science. 4, 1-19.

Argyris, J., Dahal, P., Hayashi, E., Still, D.W., Bradford, K.J., 2008. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiology. 148, 926–947.

Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H., 2013. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed. Springer, New York.

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York, USA.

Chantre, G.R., Batlla, D., Sabbatini, M.R., Orioli, G., 2009. Germination parameterization and development of an after-ripening thermal-time model for primary dormancy release of Lithospermum arvense seeds. Annals of Botany. 103, 1291– 1301.

Covell, S., Ellis, R.H., Roberts, E.H., Summerfield, R.J., 1986.The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean, and cowpea at constant temperatures. Journal of Experimental Botany. 37, 705– 715.

del Monte, J.P., Aguado, P.L., Tarquis, A.M., 2014. Thermal time model of Solanum sarrachoides germination. Seed Science Research. 24, 321 – 330.

Derakhshan, A., Moradi-Telavat, M.R., Siadat, S.A., 2016. Hydrotime analysis of Melilotus officinalis, Sinapis arvensis and Hordeum vulgare seed germination. Iranian Journal of Plant Protection. 30, 518-532. [In Persian with English Summary]

Ghaderi-far, F.,Gherekhloo, J., Alimagham, M., 2010. Influence of environmental factors on seed germination and seedling emergence of yellow sweet clover (Melilotus officinalis). Planta Daninha. 28, 463-469.

Gonai, T., Kawahara, S., Tougou, M., Satoh, S., Hashiba, T., Hirai, N., Kawaide, H., Kamiya, Y., Yoshioka, T., 2004. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. Journal of Experimental Botany. 55, 111–118.

Gornik, K., de Castro, R.D., Liu, Y., Bino, Y.L., Groot, S.P.C., 1997. Inhibition of cell division during cabbage (Brassica oleracea L.) seed germination. Seed Science Research. 7, 333–340.

Hardegree, S.P., 2006. Predicting germination response to temperature. I. Cardinal-temperature models and sub-population specific regression. Annals of Botany. 97, 1115– 1125.

Hilhorst, H.W.M., 2007. Definitions and hypotheses of seed dormancy. In Bradford, K.J., Nonogaki, H. (eds.), Seed Development, Dormancy and Germination. Blackwell Publishing, Oxford, pp. 50–71.

Huo, H., Bradford, K.J., 2015. Molecular and hormonal regulation of thermoinhibition of seed germination. In Anderson, J.V. (ed.), Advances in Plant Dormancy. Springer International Publishing, Switzerland, pp. 3-33.

Huo, H., Dahal, P., Kunusoth, K., McCallum, C.M., Bradford, K.J., 2013. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 is essential for thermoinhibition of lettuce seed germination but not for seed development or stress tolerance. The Plant Cell. 25, 884–900.

Linkies, A., Leubner-Metzger, G., 2012. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Reports. 31, 253–270.

Mesgaran, M. B., Mashhadi, H. R., Alizadeh, H., Hunt, J., Young, K. R., Cousens, R. D., 2013. Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research. 53, 89-101.

Nascimento, W.M., Huber, D.J., Cantliffe, D.J., 2013. Carrot seed germination and respiration at high temperature in response to seed maturity and priming. Seed Science and Technology. 41, 164–169.

Toh, S., Kamiya, Y., Kawakami, N., Nambara, E., McCourt, P., Tsuchiya, Y., 2012. Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant and Cell Physiology. 53, 107–117.

Watt, M.S., Bloomberg, M., Finch-Savage, W.E., 2011. Development of a hydrothermal time model that accurately characterises how thermoinhibition regulates seed germination. Plant, Cell & Environment. 34, 870–876.