تاثیر پیش تیمار بذر با اسید آبسیزیک در القای تحمل به تنش گرما در گیاهچه‏ ی ذرت (Zea mays L.)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زراعت دانشکده کشاورزی دانشگاه یاسوج

2 دانشیار گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه یاسوج

3 استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ایران.

4 دانش آموخته کارشناسی ارشد خاکشناسی دانشگاه ولی عصر رفسنجان

چکیده

اسید آبسیزیک یکی از هورمون‏های گیاهی است که نقش عمده‏ای در چرخه زندگی گیاه داشته و بسیاری از فرایندهای مهم فیزیولوژیکی ازجمله  نمو و سازگاری گیاه به تنش‏های محیطی را تنظیم می‏نماید.اسید آبسیزیکاز طریق کنترل وضعیت آبی گیاه تحت تنش، اثرات زیان‏بار خسارت تنش گرما را به‌طور چشمگیری کاهش می‏دهد. این آزمایش به‌صورت فاکتوریل در قالب طرح بلوک‏های کامل تصادفی با سه تکرار در گلخانه دانشکده کشاورزی دانشگاه ولی‌عصر رفسنجان در سال 1392 انجام گرفت. فاکتور اول شامل پیش‌تیمار هورمون اسید آبسیزیک در 4 سطح صفر، 50، 100 و 200 میکرومولار و فاکتور دوم شامل اعمال تنش گرما با درجه‌حرارت 40 درجه سانتی‏گراد در 4 بازه‏ی زمانی صفر، 8، 16 و 24 ساعت بود که به گیاهچه‏های ذرت، هیبرید سینگل‌کراس 704 اعمال شدند. گیاهچه‏های ذرت قادر به تحمل تنش گرمایی 8 ساعت بودند و تأثیر منفی گرما با افزایش مدت‌زمان آن افزایش یافت که منجر به کاهش تولید ماده خشک اندام هوایی در تنش گرمایی 16 و 24 ساعته گردید. افزایش غلظت اسید آبسیزیک و تنش گرما باعث کاهش معنی‏داری در کلروفیل a ذرت گردید، به‌طوری‌که در شرایط گرمای 24 ساعته و غلظت 200 میکرومولار اسید آبسیزیک، با کاهش 9/36 درصدی نسبت به شاهد به دست آمد. همچنین تنش گرمای 24 ساعت سبب کاهش کارتنوئید به میزان 17 درصد نسبت به شاهد گردید. غلظت 50 و 100 میکرومولار اسید آبسیزیک، تا حدودی توانسته سبب کاهش نشت یونی برگ، افزایش محتوای نسبی آب و شاخص سبزینگی برگ ذرت شود، که درنتیجه سبب افزایش وزن خشک اندام هوایی ذرت در شرایط تنش گرما می‏گردد.

کلیدواژه‌ها


Agarwal, S., Sairam, R.K., Srivastava, G.C., Meena, R.C., 2005. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum. 49, 541-550.

Ahmadi, M., Myrhajy, H., 2012. Evaluation of thermal stress effects on corn (case study: Qazvin province). Environmental Sciences. 9 (3), 119-128. [In Persian with English Summary].

Arnon, D.E., 1949. Copper enzymes in isolated chloroplasts polyphenol oxidase (Beta vulgaris). Plant Physiology. 24, 1-15.

Attarzadeh, M., Torabi, B., Madah Hossieni, S., 2015. TheInteraction Effect of Salicylic Acid and High Temperature Stress on Some Physiological Characteristics of Maize) Zea mays L.(. Iranian Journal of Field Crops Research. 12(4), 718-726. [In Persian with English Summary].

Ding, W., Song, L., Wang, X., Bi, Y., 2010. Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. Biologia Plantarum. 54(4), 607-613.

Dinler, B. S., Demir, E., Kompe, Y.O., 2014. Regulation of auxin, abscisic acid and salicylic acid levels by ascorbate application under heat stress in sensitive and tolerant maize leaves. Acta Biologica Hungarica. 65(4), 469-80.

Duan, B., Yang, Y., Lu, Y., Korpelainen, H., Berninger, F., Lim C., 2007. Interactions between water deficit, ABA and provenances in Picea asperata. Journal of Experimental Botany. 58(11), 3025-3036.

Ghosh, P.K., Ajay, K.K., Bandyopadhyay, M.C., Manna, K.G., Mandal, A.K., Hati, K.M., 2004. Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping system in vertisols of semi-arid tropics. Dry matter yield, nodulation, chlorophyll content and enzyme activity. Bioresource Technology. 95, 85-93.

Gosavi, G.U., Jadhav, A.S., Kale, A.A., Gadakh, S.R., Pawar, B.D., Chimote, V.P., 2014. Effect of heat stress on proline, chlorophyll content, heat shock proteins and antioxidant enzyme activity in sorghum (Sorghum bicolor) at seedlings stage. Indian Journal of Biotechnology. 13(3), 356-363.

Guan, L., Zhao, J., Scandalios, J.G., 2000. Cis-elements and trans-factors that regulate expressionof the maize Catl antioxidant gene in response to ABA and osmotic stress: H2O2 is the likelyintermediary signaling molecule for the response. Plant Journal. 22, 87-95.

Gupta, N.K., Agarwal, S., Agarwal, V.P., Nathawat, N.S., Gupta, S., Singh, G., 2013. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum. 35(6), 1837-1842.

Gur, A., Demirel, U., Ozden, M., Kahraman, A., Copur, O., 2010. Diurnal gradual heat stress affects antioxidant enzymes, proline accumulation and some physiological components in cotton (Gossypium hirsutum L.). African Journal of Biotechnology. 9(7), 1008-1015.

Hagenbeek, D., Quatrano, R.S., Rock, C.D., 2000. Trivalent ions activate abscisic acid-induciblepromoters through an ABI1-dependent pathway in rice protoplasts. Plant Physiology. 123, 1553–1560.

Hashem, A., Amin Mujadar, M.N., Hamid, A., Hossain, M.M. 1998. Drought stress effects on seed yield, yieldattributes, growth, cell membrane stability of synthesized Brassica napus L. Journal of Agronomy and CropScience. 180, 129-136.

Hu, X., Jiang, M., Zhang, A., Lu, J., 2005. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta. 223(1), 57-68.

Hussain, S., Ali. A., Ibrahim, M., Saleem, M. F., alias Haji, M. A., Bukhsh, A., 2012. Exogenous application of abscisic acid for drought tolerance in sunflower (Helianthus annuus L.). Journal of Animal and Plant Sciences. 22(3), 806- 826.

Ivanov, A. G., Kitcheva, M. I., Christov, A. M., Popova, L. P., 1992. Effects of abscisic acid treatment on the thermo stability of the photosynthetic apparatus in barley chloroplasts. Plant Physiology. 98(4), 1228- 1232.

Kafi, M., Borzouei, M., Salehi, M., Kamandi, A., Masomi, A., Nabati, J., 2012. Physiology of plants to environmental stresses. University of Mashhad Press. 502 pages. (In Persian).

Kesici, M., Gulen, H., Ergin, S., Turhan, E., Ipek, A., Koksal, N., 2013. Heat-stress tolerance of some strawberry (Fragaria × ananassa) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41(1), 244-249.

Kochaki, A., Khiabani, H., 2010. Ecological agriculture. University of Mashhad Press. 288 pages. (In Persian).

Lahooti, M., Zari Hassan Abadi, D., Ahmadian, R., 2003. Biochemistry and physiology of plant hormones. University of Mashhad Press. 359 pages. (In Persian).

Liu, X., Huang, B., 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science. 40, 503–510.

Madhava Rao, K.V., Raghavendra, A.S., Janardhan Reddy, K., 2006. Physiology and molecular biology of stress tolerance in plants. Springer publication. 337 pp.

Mcadam, S.A.M., Brodribb, T. J., 2012. Fern and lycophyte guard cells do not respond to endogenous abscisic acid. The Plant Cell. 24, 1510- 1521.

Pantin, F., Monnet, F., Jannaud, D., Miguel, J., Jeanne, C., Bertrand, R., Simonneau, M. T., Genty, B., 2013. The dual effect of abscisic acid on stomata. New Phytologist. 197(1), 65- 72.

Pei, Z. M., Murata, N., Benning, O., Thomine, S., Klusener, G. J., Grill, E., Schroeder, J. I., 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature. 406, 731-734.

Pessarakli, M., 1999. Hand book of plant and crop stress. Marcel Dekker Inc. 697 pages.

Queitsch, C., Hong, S. W., Vierling, E., Lindquist, S., 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 12, 479–492.

Sairam, R.K., Dharmar, K., Chinnusamy, V., Meena, R. C., 2009. Water logging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mug bean (Vigna radiata). Journal of Plant Physiology. 6, 602-616.

Sariri, R., Galvani, M., Fotouhi Ghazvini, R., Jafarian, V., 2011. The effect of cold temperature stress on antifreeze protein production and lipid peroxidation in two citrus species. Iranian Journal of Plant Biology. 3(7), 97-102. [In Persian with English Summary].

Skriver, K., Mundy, J., 1990. Gene expression in response to abscisic acid and osmotic stress. The Plant Cell. 2(6), 503-512.

Wahid, A., 2007. Physiological implications of metabolites biosynthesis in net assimilation and heat stress tolerance of sugarcane (Saccharum officinarum) sprouts. Journal Plant Research. 120, 219–228.

Weatherely, P. E., 1950. Studies in water relation on cotton plants, the field measurement of water deficit in leaves. New Phytologist. 49, 81-87.

Yang, G., Wang, Y., Zhang, K., Gao, C., 2014. Expression analysis of nine small heat shock protein genes from Tamarix hispida in response to different abiotic stresses and abscisic acid treatment. Molecular Biology Reports. 41(3), 1279–1289.

Zhou, J., Wang, J., Li, X.,  Xia, X. J.,  Zhou, Y. H., Shi, K., Chen, Z., Yu, J. Q., 2014. H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany. 65 (15), 4371-4383.