کمی سازی اثرات دما بر جوانه زنی و القای کمون ثانویه در ارقام مختلف جو

نوع مقاله: مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد علوم و تکنولوژی بذر دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

2 دانشیار گروه زراعت دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

3 دانشجوی دکتری زراعت، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

4 دانشیار گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان

5 دانشیار موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج

چکیده

دما یکی از مهم‏ترین عوامل کنترل‌کننده جوانه ‏زنی بذر در گیاهان مختلف محسوب می‏شود. همچنین، دما نقش مهمی در القا و یا رفع کمون بذرها ایفا می‏کند. این موضوع می‏تواند در مدیریت زراعی نظیر تعیین زمان کاشت، پیش‏تیمار بذرها در زمان کاشت و یا شرایط انبارداری بسیار مهم باشد. ازاین‌رو، این مطالعه به‌منظور بررسی اثرات دما بر درصد و سرعت جوانه‌زنی و همچنین، القای کمون در بذرهای 15 رقم جو صورت گرفت. نتایج نشان داد بین ارقام ازلحاظ درصد جوانه‌زنی در دماهای مختلف اختلاف قابل‌توجهی وجود داشت و بیشترین اختلاف نیز در دماهای بالا (به‏ ویژه در دمای 35 درجه سانتی‌گراد) مشاهده شد. دماهای کاردینال جوانه ‏زنی نیز در ارقام مختلف جو متمایز از یکدیگر بود. بیشترین اختلاف مربوط به دمای پایه و دمای مطلوب جوانه‌زنی بود و ازلحاظ دمای سقف اختلاف معنی‏ داری بین ارقام موردبررسی مشاهده نشد. در این مطالعه، علت عدم جوانه‌زنی بذرهای جو در دمای بالا نیز بررسی شد و نتایج حاکی از این بود که عدم جوانه‌زنی در دمای بالا بخشی مربوط به القای کمون و بخشی مربوط به مرگ بذرها پس از قرارگیری در دمای بالا می‏باشد. با افزایش مدت‌زمان قرارگیری بذرها در دمای بالا قابلیت جوانه‌زنی و مرگ بذرها به ترتیب به‌صورت نمایی کاهش و افزایش یافت. از طرفی، القای کمون در بذرها از یک توزیع نرمال تبعیت کرد، به‌طوری‌که با افزایش زمان قرارگیری بذرها در دمای بالا ظرفیت القای کمون ابتدا افزایش و سپس کاهش یافت. در این مطالعه مشخص شد که دو رقم ارم و ارس در مقایسه با سایر ارقام از ظرفیت القای کمون بالاتر و دو رقم صحرا و جنوب از ظرفیت القای کمون پایین‏تری برخوردار بودند.

کلیدواژه‌ها


Alvarado, V., Bradford, K., 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment. 25, 1061-1069.

Argyris, J., Dahal, P., Hayashi, E., Still, D.W., Bradford, K.J., 2008. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiology. 148, 926-947.

Argyris, J., Truco, M.J., Ochoa, O., McHale, L., Dahal, P., Van Deynze, A., Bradford, K.J., 2011. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6. 1 in lettuce (Lactuca sp.). Theoretical and Applied Genetics. 122, 95-108.

Akram-Ghaderi, F., Soltani, A., Sadeghipour, H.R., 2008a. Cardinal temperature of germination in medical pumpkin (Cucurbita pepo conver pepo var. styriaca), borago (Borago officinalis L.) and black cumin (Nigella sativa L.). Asian Journal of Plant Science. 2, 101-109.

Akram-Ghaderi, F., Soltani, E., Soltani A., Miri, A.A., 2008b. Effect of priming on response of germination to temperature in cotton. Journal of Agricultural Science and Natural Resources. 15, 44-51. [In Persian with English summary].

Bewley, J.D., Bradford, K.J. Hilhorst, H.W.M., Nonagaki, H., 2013. Seeds: physiology of development, germination and dormancy, 3th Edition. Springer. New York Heidelberg Dordrecht London. 392p.

Baskin, C.C., Baskin, J.M., 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, California. 666p.

Biddington, N., Thomas, T., 1978. Thermodormancy in celery seeds and its removal by cytokinins and gibberellins. Physiologia Plantarum. 42, 401-405.

Bradford, K.J., 2002. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science. 50, 248-260.

Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F.L., Holdsworth, M. J., 2008. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. The Plant Journal. 53, 214-224.

Chen, F., Bradford, K.J., 2000. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiology. 124, 1265-1274.

Chen, S.Y., Chou, S.H., Tsai, C.C., Hsu, W.Y., Baskin, C.C., Baskin, J.M., Kuo-Huang, L.L., 2015. Effects of moist cold stratification on germination, plant growth regulators, metabolites and embryo ultrastructure in seeds of Acer morrisonense (Sapindaceae). Plant Physiology and Biochemistry. 94, 165-173.

Corbineau, F., Rudnicki, R., Côme, D., 1988. Induction of secondary dormancy in sunflower seeds by high temperature. Possible involvement of ethylene biosynthesis. Physiologia Plantarum. 73, 368-373.

Dutta, S., Bradford, K.J., 1994. Water relations of lettuce seed thermoinhibition. II. Ethylene and endosperm effects on base water potential. Seed Science Research. 4, 11-18.

Eshraghi-Nejad, M., Bakhshandeh, A., Gharineh, M.H., Soltani, A., 2015. Quantification of Barley Emergence to Temperature. International Journal of Agriculture Innovations and Research. 3, 1318-1321.

Gallardo, M., De Rueda, P.M., Matilla, A., Sánchez-Calle, I., 1994. The relationships between ethylene production and germination of Cicer arietinum seeds. Biologia Plantarum. 36(2), 201.

Geshnizjani, N., Ghaderi-Far, F., Willems, L. A., Hilhorst, H. W., Ligterink, W., 2018. Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy. BMC Plant Biology. 18, 229.

Ghaderi-Far, F., Alimagham, S., Kameli, A., Jamali, M., 2012. Isabgol (Plantago ovata Forsk) seed germination and emergence as affected by environmental factors and planting depth. International Journal of Plant Production. 6, 185-194.

Ghaderi-Far, F., Soltani, E., 2015. Evaluation of seed germination in sesame genotypes in response to temperature: determination of cardinal temperatures and thermal tolerance. Iranian Journal of Filed Crop Science. 46, 473-483 [In Persian with English summary].

Hills, P.N., Van Staden, J., 2003. Thermoinhibition of seed germination. South African Journal of Botany. 69, 455–461.

Khaliliaghdam, N., Mirmahmoodi, T. Saedian, Sh., 2017. Critical temperature determination of flax seed germination (Linum usitatissimum L.) by nonlinear regression. Seed Research. 7: 41-49 [In Persian with English summary].

Khalili, N. Soltani, A. Zeinali, E. Ghaderi-Far, F., 2014. Evaluation of nonlinear regression models to quantify barely germination rate response to temrature and water potential.  Journal of Crop Production. 4, 23-40 [In Persian with English summary].

Leymarie, J., Benech-Arnold, R. L., Farrant, J. M., Corbineau, F., 2009. Thermodormancy and ABA metabolism in barley grains. Plant Signaling and Behavior. 4, 205-207.

Leymarie, J., Robayo-Romero, M.E., Gendreau, E., Benech-Arnold, R.L., Corbineau, F., 2008. Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds. Plant and Cell Physiology. 49(12), 1830-1838.

Matthews, D., Hayes, P., 1982. Effect of temperature on germination and emergence of six cultivars of soybean (Glycine max). Seed Science and Technology. 10, 547-555.

Mamedi, A., Tavakkol Afshari, R., Oveisi, M., 2017. Cardinal temperatures for seed germination of three Quinoa (Chenopodium quinoa Willd.) cultivars. Iranian Journal of Field Crop Science. 48, 89-100 [In Persian with English summary].

Mei, Y., Song, S., 2008. Cross-tolerance is associated with temperature and salinity stress during germination of barley seeds. Seed Science and Technology. 36, 689-698.

Mwale, S., Azam-Ali, S., Clark, J., Bradley, R., Chatha, M., 1994. Effect of temperature on the germination of sunflower (Helianthus annuus). Seed Science and Technology. 22, 565-571.

Nascimento, W. M., Cantliffe, D. J., Huber, D. J., 2000. Thermotolerance in lettuce seeds: association with ethylene and endo-β-mannanase. Journal of the American Society for Horticultural Science. 125, 518-524.

Nascimento, W.M., Cantliffe, D.J., Huber, D.J., 2001. Endo-β-mannanase activity and seed germination of thermosensitive and thermotolerant lettuce genotypes in response to seed priming. Seed Science Research. 11, 255-264.

Nascimento, W.M., Cantliffe, D.J., Huber, D.J., 2004. Ethylene evolution and endo-beta-mannanase activity during lettuce seed germination at high temperature. Scientia Agricola. 61, 156-163.

Saini, H.S., Consolacion, E.D., Bassi, P.K., Spencer, M.S., 1989. Control processes in the induction and relief of thermoinhibition of lettuce seed germination: actions of phytochrome and endogenous ethylene. Plant Physiology. 90, 311-315.

Seefeldt, S. S., Kidwell, K. K., Waller, J. E., 2002. Base growth temperatures, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the US Pacific Northwest. Field Crops Research. 75, 47-52.

Soltani, A., Galeshi, S., Latifi, N., Zeynali, E., 2001. Genetic variation for and interrelationships among seed vigor traits in wheat from the Caspian Sea coast of Iran. Seed Science and Technology. 29, 653-662.

Skourti, E., Thanos, C.A., 2015. Seed afterripening and germination photoinhibition in the genus Crocus (Iridaceae). Seed Science Research. 25, 306-320.

Soltani, A., Robertson, M., Torabi, B., Yousefi-Daz, M., Sarparast, R., 2006. Modelling seedling emergence in chickpea as influenced by temperature and sowing depth. Agricultural and Forest Meteorology. 138, 156-167.

Soltani, E., Ghaderi-Far, F., Baskin, C.C., Baskin, J.M., 2016. Problems with using mean germination time to calculate rate of seed germination. Australian Journal of Botany. 63, 631-635.

Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Tamura, N., 2008. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiology. 146, 1368-1385.

Torabi, B., Adibniya, M., Rahimi, A., 2015. Seedling emergence response to temperature in safflower: measurements and modeling. International Journal of Plant Production. 9, 393-412.

Vigil, M. F., Anderson, R., Beard, W., 1997. Base temperature and growing-degree-hour requirements for the emergence of canola. Crop Science. 37, 844-849.

Willemsen, R. W., 1975. Effect of stratification temperature and germination temperature on germination and the induction of secondary dormancy in common ragweed seeds. American Journal of Botany. 62, 1-5.

Xia, Q., Maharajah, P., Cueff, G., Rajjou, L., Prodhomme, D., Gibon, Y., El-Maarouf-Bouteau, H., 2018. Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. Plant Science. 269, 118-125.

Yoong, F.Y., O’Brien, L. K., Truco, M. J., Huo, H., Sideman, R., Hayes, R., Bradford, K. J., 2016. Genetic variation for thermotolerance in lettuce seed germination is associated with temperature-sensitive regulation of ETHYLENE RESPONSE FACTOR1 (ERF1). Plant Physiology. 170, 472-488.

Zeinali, E., Soltani, A., Galeshi, S. Sadati, S.J., 2010. Cardinal temperatures, response to temperature and range of thermal tolerance for seed germination in wheat (Triticum aestivum L.) cultivars. Journal of Crop Production. 3: 23-42 [In Persian with English summary].

Zhang, R., Baskin, J.M., Baskin, C.C., Mo, Q., Chen, L., Hu, X., Wang, Y., 2017. Effect of population, collection year, after-ripening and incubation condition on seed germination of Stipa bungeana. Scientific Reports. 7, 13893. 1010, 75-85.