ارزیابی مزرعه‌ای تنش کوتاه‌مدت گرما در قبل و بعد از گل‌دهی بر خصوصیات فیزیولوژیک گندم نان بهاره (.Triticum aestivum L) در شرایط آب‌ و هوایی اهواز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 سازمان جهاد کشاورزی استان اصفهان

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

3 مرکز بین‌المللی اصلاح ذرت و گندم (CIMMYT)، کرج، ایران

چکیده

به‌منظور بررسی دوره‌های کوتاه‌مدت تنش گرما بر عملکرد دانه و خصوصیات فیزیولوژیک گیاه گندم، آزمایشی در سال زراعی 94-1393 در مزرعه تحقیقاتی دانشگاه علوم کشاورزی و منابع طبیعی خوزستان به‌صورت بلوک‌های نواری در سه تکرار اجرا گردید. عامل‌های آزمایشی شامل چهار رقم گندم بهاره بودند. تنش گرما (حداکثر 35 درجه سانتی‌گراد) با نصب اتاقک‌های تولید تنش حرارتی روی کرت‌ها اعمال گردید. بوته‌های گندم به مدت سه روز متوالی در مرحله ظهور سنبله (H1) ،- و یا در ابتدای تشکیل دانه (H2) ،- در معرض تنش گرما قرار گرفتند. نتایج نشان داد که بین سطوح تنش و ارقام در صفات مورد بررسی اختلاف معنی‌داری وجود داشت. تنش گرمای کوتاه‌‌مدت عملکرد دانه ارقام چمران، مارون، اروند و اترک را به‌طور میانگین به‌ترتیب 19.6، 18.6، 17.8 و 11.2 درصد نسبت به شاهد (بدون تنش) کاهش داد. تنش گرما فلئورسانس کلروفیل، محتوای آب نسبی برگ و پایداری غشای سلولی را به‌طور معنی‌داری کاهش داد ولی هدایت روزنه‌ای، سرعت افت کلروفیل و غلظت پرولین افزایش یافت. همبستگی منفی و معنی‌داری بین افت عملکرد دانه با غلظت کلروفیل کل (r =-0.67 در تنش H1 وr =-0.77 در تنش H2 ) به‌دست آمد. فعالیت آنزیمی کاتالاز پراکسیداز و سوپراکسید‌دیسموتاز در واکنش به تنش H1 یا H2 به‌طور معنی‌دار افزایش یافتند. نتایج تجزیه به عامل‌ها نشان داد، چهار عامل در مجموع 7/86 و سه عامل 86.4 درصد واریانس بین ارقام را به ترتیب در تنش H1 و تنش H2 توجیه کردند. ارقام اترک، چمران و اروند با تداوم فتوسنتز بیشتر، محتوای متابولیت بیشتر و ساز و کار دفاع آنزیمی بهتر نسبت به رقم مارون به تنش گرما را تحمل کردند. می‌توان گفت که ارقام با سرعت کمتر پیر شدن برگ بعد از مواجهه با گرما و حفاظت آنزیمی بیشتر می‌توانند در برابر گرما متحمل‌تر باشند.

کلیدواژه‌ها


Aebi, H.E. 1983. Catalase. In: Bergmeyer H.U., Bergmeyer J., Grabi M. (eds.), Methods of Enzymatic Analysis. Third ed. Vol. 3. pp. 273-282, VCH Verlagsgesellschaft mbH, Germany.

Allakhverdive, S.I., Kreslavski, V.D., Klimov, V.V., Los, D.A., Carpentier, R., Mohanty, P., 2008. Heat Stress: An overview of molecular responses in photosynthesis. Photosynthesis Research. 98, 541-550.

Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology. 24, 1-15.

Atteya, A.M., 2003. Alteration of water relations and yield of corn genotypes in response to drought stress. Journal of Plant Physiology. 29, 63-76.

Baker, N.R., Rosenquist, E., 2004. Application of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. Journal of Experimental Botany. 55, 1607-1627.

Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39, 205-207.

Beachamp, C., Fridovich, F., 1971. Superoxide dismutase: cadmium assay and an assay applicable to acrylamide gels. Annual Biochemistry. 44, 276-27.

Blum, A., Mayer, J., Golan, G., 1988. The effect of grain number per ear (sink size) on source activity and its water relations in wheat. Journals Experiment of Botany. 39, 106 – 114.

Chance, B., Maehly, A.C., 1955. Assay of catalase and peroxidase. Methods in enzymology. 2, 764-775.

Farooq, M., Bramley, H., Palta, J.A., Siddique, H.M., 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences. 30, 1–17.

Gibson, L.R., Paulsen, G.M., 1999. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Science. 39, 1841–1846.

Harris, K., Subudhi, P.K., Borrell, A., Jordan, D., Rosenow, D., Nguyen, H.T., Klein, P., Klein, R., Mullet, J., 2007. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. Journal of Experimental Botany. 58, 327–338.

Havaux, M., Tardy, F., 1999. Loss of chlorophyll with limited reduction of photosynthesis as an adaptive response of Syrian barley landraces to high drought and heat stress. Australian Journal of Physiology. 26, 569-578.

Hays, D.B., Do, J.H., Mason, R.E., Morgan, G., and Finlayson, S.A., 2007. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Science. 172, 1113–1123.

Heath, R.L., Packer, L., 1969. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125, 189-198.

Jalal-Kamali, M.R., Duveiller, E., 2008.Wheat Production and Research in Iran: A Success Story. In: Raynolds, M.P., Pietragalla, J., Braun, H.J. (eds.). Proceeding of the international symposium on wheat yield potential: Challenges to international wheat breeding. pp. 54-58. CIMMYT, D.F. Mexico. 2008.

Jubany-Mari, T., Munne-Bosch, S., Alegre, L., 2010. Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiology and Biochemistry. 48, 351-358.

Kolchevskii, K.G., Kocharyan, N.I., Koroleva, Q.Y., 1990. Effect of salinity on photosynthetic characteristic and ion accumulation in C3 and C4 plant of Ararat plain. Photosynthetica. 31, 277-282.

Liu, C.M., Zhang, J.H., 2000. Heat–induced multiple effects on PSII in wheat plants. Journal of Plant Physiology. 156, 259-265.

Lopes, M.S., Reynolds, M.P., Jalal-Kamali, M.R., Moussa, M., Feltaous, Y., Tahir, I.S.A., Barma, N., Vargas, M., Mannes, Y., Baum, M., 2012. The yield correlations of selectable physiological traits in a population of advanced spring wheat lines grown in warm and drought environments. Field Crops Research. 128, 129–136.

Modarresi, M., Mohammadi, V., Zali, A., Mardi, M. 2010. Response of wheat yield and yield related traits to high temperature. Cereal Research Communications. 38, 23-31.

Mojtabaei-Zamani, M. 2012. Investigation of some physiological mechanisms of heat tolerance during grain filling period in wheat. PhD dissertation, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran. [In Persian with English Summary].

Morant-Manceau, A., Pradier, E., Tremblin, G. 2004. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species salt stress. Journal of Plant Physiology. 169, 25-33.

Moshattati, A., Alami-Saied, K., Siadat, S.A., Bakhshandeh, A.M., Jalal-Kamali, M.R., 2010. Evaluation of terminal heat stress tolerance in spring bread wheat cultivars in Ahwaz conditions. Iran Journal Crop Science. 12, 85-99. [In Persian with English Summary].

Nakano, Y., Asada, K., 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant and Cell Physiology. 28, 131-140.

Pessarakli, M., 1999. Hand book of Plant and Crop Stress. Marcel Dekker Incorporation, 697P.

Reynolds, M.P., Balota, M., Delgado, M.I.B., Amani, I., Fischer, R.A., 1994. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Australian Journal of Plant Physiology. 21, 717–730.

Reynolds, M.P., Nagarajan, S., Razzaque, M.A., Ageeb, O.A.A., 2001. Heat tolerance. In: Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A. (eds.), Application of Physiology in Wheat Breeding. Mexico, D. F. CIMMYT.

Reynolds, M.P., Singh, R.P., Ibrahim, A., Ageeb, O.A.A., Larque-Saavedra, A., Quick, J.S., 1998. Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica. 100, 85–94.

Roshanfekr-Dezfuli, H., Nabipour, M., Moradi, F., Mesgarbashi, M., 2011. Effect of temperature change on stomatal conductance and chlorophyll concentration in wheat. Crop Production (Scientific Journal of Agriculture), 34, 39-52. [In Persian with English Summary].

Sairam, R.K., Srivastava, G.C., Saxena, D.C. 2000. Increased antioxidant activity under elevated temperatures: a mechanism of heat stress tolerance in wheat genotypes. Biologyca Plantarum. 43, 245–251.

Schonfeld, M.A., Johnson, R.C., Carver, B.F., Mornhinwag, D.W. 1988.Water relations in winter wheat as drought resistance indicators. Crop Science: 28, 526-531.

Showler, A.T., Castro, B.A., 2010. Influence of drought stress on Mexican rice borer (Lepidoptera: Crambidae) oviposition preference in sugarcane. Crop Protection. 28, 722-727.

Swidzinski, J.A., Leaver, C.J., Sweetlove, L.J., 2004. A proteomic analysis of plant programmed cell death. Photochemistry, 65, 1829-1838

Talukder, A.S.M.H.M., Gill, G.S., McDonald, G.K., Hayman, P.T., Alexander, B.M., 2010. Field evaluation of sensitivity of wheat to high temperature stress near flowering and early grain set. In: Dove, H., Culvenor, R.A. (eds.), Food Security from Sustainable Agriculture. Proceedings of the 15th Australian Agronomy Conference. Lincoln, New Zealand.

Teskey, R., Wertin, T., Bauweraerts, I., Ameye, M., Mcguire, M.A., Steppe, K. 2015. Responses of tree species to heat waves and extreme heat events. Plant, Cell and Environment. 38, 1699–1712.

Turkan, I., Bor, M., Ozdemir, F., Koca, H. 2005. Differential responses of lipid peroxidation and antioxidants in the lea stress conditions. Plant Science. 163, 769-779.

Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007. Heat tolerance in plants: an overview. Environmental Experiments Botany. 61, 199–223.

Wardlaw, I.F., Blumenthal, C., Larroque, O., Wrigley, C.W., 2002. Contrasting effects of chronic heat stress and heat shock on kernel weight and flour quality in wheat. Functional. Plant Biology. 29, 25–34.

Zadoks, J.C., Chang, T.T., Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weeds Research. 14, 415-421.

Zhang, J., Jiang, X.D., Li, T.L., Cao, X.J., 2014. Photosynthesis and ultrastructure of photosynthetic apparatus in tomato leaves under elevated temperature. Photosynthetica 52, 430–436.