تاثیر محلول پاشی نانو ذرات دی اکسید تیتانیوم بر وزن بلال و برخی ویژگی های بیوشیمیایی ذرت شیرین (Zea mays var saccharata) در شرایط تنش کمبود آب

نوع مقاله: مقاله پژوهشی


استادیار، گروه زراعت و اصلاح نباتات، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران


به منظور بررسی اثر تنش کمبود آب و محلول پاشی با نانو ذرات دی اکسید تیتانیوم بر وزن بلال و برخی ویژگیهای بیوشیمیایی ذرت شیرین، آزمایشی به صورت کرتهای خرد شده در قالب طرح بلوکهای کامل تصادفی در سه تکرار در ایستگاه تحقیقاتی دانشکده ی کشاورزی دانشگاه آزاد اسلامی واحد تبریز در سال 1396 به اجرا در آمد. تیمارهای آزمایشی عبارت از تنش کمبود آب در سه سطح 50، 75 و 100 درصد رطوبت قابل دسترس و محلول پاشی با نانو ذرات دی اکسید تیتانیوم در چهار سطح صفر، 0.01، 0.03 و 0.05 درصد بودند. ننتایج نشان داد که محلول‌پاشی نانو دی اکسید تیتانیوم بر فعالیت آنزیم پراکسیداز و اثر متقابل محلول‌پاشی نانو دی اکسید تیتانیوم و تنش کمبود آب بر میزان آنزیم مالون دی آلدئید، قندهای محلول، پرولین و وزن بلال معنی‌دار بود. محلول‌پاشی نانو دی اکسید تیتانیوم با غلظت 0.01 درصد موجب افزایش فعالیت آنزیم پراکسیداز شد اما با افزایش غلظت، فعالیت این آنزیم کاهش یافت. همچنین محلول‌پاشی با نانو دی اکسید تیتانیوم با غلظت 0.01 درصد در تیمار 50 درصد رطوبت قابل دسترس موجب افزایش میزان قندهای محلول، پرولین و کاهش مالون دی آلدئید گردید و در تیمار آبیاری کامل در مقایسه با عدم محلول‌پاشی در تیمار 50 درصد رطوبت قابل دسترس و شاهد (عدم محلول‌‌پاشی در تیمار 100 درصد رطوبت قابل دسترس) وزن بلال را به ترتیب 38.5 و 9.7 درصد افزایش داد. در کل محلول‌پاشی با غلظت 0/01 درصد نانو دی اکسید تیتانیوم در شرایط تنش کمبود آب توانست با تاثیرگذاری بر فعالیت آنزیم‌های مرتبط با کاهش اثرات مخرب تنش، منجر به افزایش وزن بلال در شرایط مشابه و عدم مصرف این ترکیب گردد.


Abdel Latef, A.A.H., Srivastava, A.K., Abd El-Sadek, M.S., Kordrostami, M., Tran, L.P., 2017. Titanium Dioxide Nanoparticles Improve Growth and Enhance Tolerance of Broad bean plants under saline soil conditions. Land Degradation and Development. 29(4), 1065-1073.

Aldesuquy, H.S., Ibraheem, F.L., Ghanem, H.E., 2018. Comparative effects of salicylic acid and/or trehalose on osmotic adjustment and solutes allocation of two droughted wheat (Triticum aestivum L.) cultivars. Advances in Agricultural Technology and Plant Sciences. 1(1), 1-14.

Aldesuquy, H.S., Abass, M.A., Abo-Hamed, S.A., Elhakem, A.H., 2013. Does glycine betaine and salicylic acid ameliorate the negative effect of drought on wheat by regulating osmotic adjustment through solutes accumulation? Journal of Stress Physiology and Biochemistry. 9(3), 05-22.

Aminian, R., Paknejhad, M., Hoseini, M., 2017. Effect of nano TiO2 on yield and yield components of safflower under normal irrigation conditions and limited irrigation stress. Enviromental Stresses in Crop Sciences. 10(3), 377-390. [In Persian with English Summary].

Azarpanah, A., Alizadeh, O., Dehghanzadeh, H., 2013. Investigation on proline and carbohydrates accumulation in Zea mays L. under water stress condition. Extreme life, Biospeology and Asterobiology, International Journal of the Bioflux Society. 5(1), 47-54.

Bates, L., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39, 205-207.

Carvajal, M., Alcaraz, C.F., 1998. Why titanium is a beneficial element for plants. Journal of Plant Nutrition. 21(4), 655-664.

Carvajal, M., Martínez-Sánchez, F., Alcaraz, C. F., 1994. Effect of Ti (IV) on some physiological activity indicators of Capsicum annuum L. plants. Horticulture Science. 69, 427-432.

Claudia Castaneda Saucedo, M., Delgado Alvarado, D., Cordova Tellez, L., Gonzalez Hernandez, V., Tapia-Campos, E., Santacruz Varela, A., 2012. Changes in carbohydrate concentration in leaves, pods and seeds of dry bean plants under drought stress. Interciencia. 37(3), 168-175

Cook, D., Fowler, S., Fiehnand, O., Etval, A., 2004. Prominent role for the CBF cold response pathway in configuring the low temperature metabolome of arabidopsis. Plant Biology. 101, 15243-8.

Dubios, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Ith, F.S., 1956. Calorimetric method for determination of sugars and related substances. Analytical Chemistry. 28, 350- 356.

Fadeel, B., Pietroiusti, A., Shvedova, A., 2017. Adverse Effects of Engineered Nanomaterials. Exposure, Toxicology, and Impact on Human Health. Elsevier Academic Press, New York. Pp. 468.

Gregersen, P.L., Culetic, A., Boschian, L., Krupinska, K., 2013. Plant senescence and crop productivity. Plant Molecular Biology. 82, 603–622.

Hasanuzzaman, M., Nahar, K., Gill, S.S. Fujita, M., 2014. Drought stress responses in plants, oxidative stress, and antioxidant defense. In: Gill, S.S., Tuteja, N. (eds.), Climate Change and Plant Abiotic Stress Tolerance. 18, 209-249.

Heath, R.L. Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. 125, 189–198.

Hemeda, H.M., Klein, B.P., 1990. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science. 55, 184–185.

Heydary Romy, R., Moaveny, P., Hoseinpour Darvishy, H., Arefrad, M., 2017. Response of some morpho-physiological characteristics of borago (Borago officinalis) to nano particles of titanium spraying. Journal of Crop Ecophysiology. 10(4), 875-890. [In Persian with English Summary].

Israr, M., Sahi, S.V., 2006. Antioxidative responses to mercury in the cell cultures of Sesbaniadrummondii. Plant Physiology Biochemical. 44, 590-595

Jaberzadeh A., Moaveni, P., Tohidi Moghaddam, H., Moradi, O., 2010. Investigation of the effect of TiO2 nanoparticles foliar application on some agronomy characteristics in wheat under drought stress. Journal of Crop Ecophysiology. 2 (4), 295-301. [In Persian with English Summary].

Janda, T., Horváth, E., Szalai, G., Páldi, E., 2007. Role of salicylic acid in the induction of abiotic stress tolerance. In: Hayat, S., Ahmad, A. (eds.), Salicylic acid: A Plant Hormone. The Netherlands: Springer. 91–150.

Kamanga, R.M., Mbega, E., Ndakidemi, P., 2018. Drought tolerance mechanisms in plants: physiological responses associated with water deficit stress in Solanum lycopersicum. Advances in Crop Science and Technology. 6(3), 1-8.

Khalilvand Behrouzyar, E., 2017. Effect of seed priming with ethanol, methanol, boron and manganese on some of morphophysiological characteristics of rapeseed (Brassica napus L.) under water deficit stress. Journal of Crop Ecophysiology. 11(4), 805-820. [In Persian with English Summary].

Khater, M.S., Osman, Y.A.H., 2015. Influence of TiO2 nanoparticles on growth, chemical constituents and toxicity of fennel plant. Arab Journal of Nuclear Science and Applications. 48 (4), 178-186.

Lei, Z., Su, M.Y., Wu, X.C., Qu, C.X., Chen, L., Huang, H., Liu, X.Q., Hong, F.S., 2008. Antioxidant stress is promoted by Nano-anatase in spinach chloroplasts under UV-Beta radiation, Biological Trace Element Research. 121, 69–79

Lokhande, V.H., Nikam, T.D. Penna, S., 2010. Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell, Tissue and Organ Culture.102, 17-25.

Luxmore, B., 1990. Methods of Soil Analysis. Part II, 3th Edition. 493-59.

Morteza, E., Moaveni, P., Morteza, T., Saemi, H., Joorabloo, A., 2015. Effects of TiO2 (nano and bulk) foliar application on physiological traits and grain yield of Safflower (Carthamus tinctorius L.). Biological Forum – An International Journal. 7 (1), 1725-1731

Moussa, H., Abdel-Aziz, S.M., 2008. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science. 1, 31-36.

Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., Gibon, Y., 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany. 62, 1715–1729.

Owolade, O. F., Ogunleti, D.O., Adenekan, M. O., 2008. Titanium dioxide affects diseases, development and yield of edible cowpea. Eletronic Journal of Environmental, Agricultural and Food Chemistry. 7(5), 2942-2947.

Prasad, R., Kumar, W., Prasad, S., 2014. Nanotechnology in sustainable agriculture: present concern and future aspects. African Journal of Biotechnology. 13 (6), 705-713.

Rosi, H., Kalyanasudaram, S., 2018. Synthesis, characterization, structural and optical properties of titanium-dioxide nanoparticles using glycosmis cochinchinensis leaf extract and its photocatalytic evaluation and antimicrobial properties. World News of Natural Sciences. 17, 1-15

Sairam, R.K., Srivastava, G.C., 2002. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science. 162, 897-904.

 Sandhya, V., Ali, S.k.Z., Grover, M., Reddy, G., Venkateswaralu, B., 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation. 62, 21-30

Sekhon, B.S., 2014. Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications. 4 (7), 31-53.

Shao, H.B., Chu L, Y., Wu, G., Zhang, J.H., Lu, Z.H., Hu, Y.C., 2007. Changes of Some anti-oxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloids and Surfaces B: Biointerfaces. 54, 143-149.

Simon, L., Balogh, A., Hajdu, F. et al., 1990. Effect of titanium on the carbohydrate content and phosphofructokinase activity of tomato. In: Pais, I. (ed.), New Results in the Research of Hardly Known Trace Elements and Their Importance in the International Geosphere-Biosphere Program. University of Horticultural and Food Science. Budapest. pp. 49–84.

Wei, P., Yang, Y., Wang, F., Chen, H., 2015. Effects of drought stress on the antioxidant systems in three species of Diospyros L. Horticulture Environment and Biotechnology. 56, 597– 605.

Yang, F., Hong, F.S., You, W.J., 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research. 110, 179–190.

Zhang, X., Lei, L., Lai, J., Zhao, H., Song, W., 2018. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. BMC Plant Biology. 18 (68), 1-16.

Zheng, L., Mingyu, S., Chao, L., Liang, C., Huang, H., Xiao, W., Xiaoqing, L., Tang, F., Gao, F., Hong, F., 2007. Effects of nanonatase TiO2 on photosynthesis of spinach chloroplast under different light illumination. Biological Trace Element Research. 119, 68-76.