بررسی تأثیر دو گونه قارچ میکوریزا-آربوسکولار در سطوح مختلف تنش رطوبتی بر برخی ویژگی‌های رشدی ذرت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار پژوهشی، بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

2 کارشناس ارشد زراعت، گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی، واحد مهاباد، مهاباد، ایران

چکیده

در شرایط تنش ، همزیستی گونه‌های قارچ میکوریزا-آربوسکولار با ریشه گیاه میزبان، تأثیر مستقیمی بر تحمل خشکی در گیاهان دارد. به‌منظور بررسی تأثیر دو گونه قارچ میکوریزا-آربوسکولار در سطوح مختلف تنش رطوبتی بر برخی ویژگی‌های رشدی ذرت، این آزمایش به‌صورت فاکتوریل با دو عامل در قالب طرح پایه کاملاً تصادفی با پنج تکرار در شرایط گلخانه اجرا گردید. عامل اول مربوط به سطوح تنش رطوبتی شامل 60، 80 و 100% ظرفیت زراعی و عامل دوم مربوط به دو گونه قارچ میکوریزا شامل Glomus intraradices و Glomus mosseae و شاهد (عدم تلقیح) بودند. نتایج نشان داد که تنش رطوبتی موجب کاهش ارتفاع بوته و وزن خشک اندام هوایی به ترتیب به میزان13% و17% شد. تنش رطوبتی بر وزن خشک ریشه بی تاثیر بود ولی، قارچ‌های مایکوریزا وزن خشک ریشه را افزایش داده و تاثیر G. mosseae نسبت به گونه G. intraradices بیشتر بود. علیرغم افزایش شدت تنش رطوبتی، قارچ­های مایکوریزا شاخص کلروفیل SPAD را افزایش داد. بیشترین شاخص کلروفیل مربوط به تیمار تلقیح با قارچ G. mosseae در 0.6 ظرفیت زراعی معادل 37.02 بود. گیاه تلقیح شده با قارچ G. mosseae نسبت به G. intraradices کارایی بیشتری در حفظ رطوبت نسبی آب برگ در شرایط تنش رطوبتی داشت. بیشترین درصد کلونیزاسیون ریشه معادل 39.04 در تیمار تلقیح با قارچ mosseae G. در 60% رطوبت زراعی به دست آمد. به‌طورکلی، نتایج پیشنهاد می­کنند که در شرایط تنش رطوبتی، گونه G. mosseae قادر به برقراری ارتباط همزیستی مؤثرتری با ریشه گیاه ذرت تحت شرایط انجام این آزمایش بود.

کلیدواژه‌ها


Abo-Ghalia, H.H., Khalafallah, A.A., 2008. Responses of wheat plants associated with arbuscular mycorrhizal fungi to short-term water stress followed by recovery at three growth stages. Journal of Applied Sciences Research. 5, 570-580.

Aliehaie, M., 1997. Descriptions of methods for chemical analysis of soil. Volume II, Soil and Water Research Institute, Publication No. 1024. [In Persian].

Aliasgharzad, N., neyshabouri, M.R., Salimi, G., 2006. Effects of arbuscular mycorrhizal fungi and Bradyrizobium japonicum on drought stress of soybean. Biologia, Bratislava. 61, 324-328.

Anjum, S.A., Tanveer, M., Ashraf, U., Hussain, S., Shahzad, B., Khan, I., Wang, L. 2016. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Environmental Science and Pollution Research. 23, 17132–17141.

Aroca, R., Porcel, R., Ruiz-lozano, J. M. 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist. 173, 808–816.

Asrar, A.W.A., Elhindi, K., 2011. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi Journal of biological Sciences. 18, 93-98.

Avis, T.J., Gravel, V., Antoun, H., Tweddell, R.J., 2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry. 40(7), 1733–1740.

Auge, R.M., Stodola, A.J.W., Ebel, R.C., Duan, X., 1995. Leaf elongation and water relations of mycorrhizal sorghum in response to partial soil drying: two Glomus species at varying phosphorus fertilization. Journal of Experimental Botany. 46, 297-307.

Barin M., Aliasgharzadeh, N., Samadi, V., 2006. Effect of arbuscular mycorrhizal fungi on the yield and absorption of nutrients in tomato under salinity from Nacl and mixtures of salts, Journal of Soil and Water Sciences. 20(1), 94-120. [In Persian with English Summery].

Bárzana, G., Aroca, R., Ruiz-Lozano, J.M. 2015. Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant, Cell AND Environonment. 38, 1613–1627.

Bompadre, M.J., Silvani, V.A., Bidondo, L.F., de Molina, M.D.C.R., Colombo, R.P., Pardo, A.G., Godeasa, A.M., 2014. Arbuscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growing under different irrigation conditions. Botany. 92, 187–193.

Cao, L.Z.X., Wj, B.X.P., 2004. Discuss on evaluating method to drought-resistance of maize in seedling stage. Journal of Maize Science. 12, 73–75.

Daryanto. S., Wang, L., Jacinthe, P-A., 2016 Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE. 11(5), e0156362. https://doi.org/10.1371/journal.pone.0156362

 Eskandari, S., Guppy, C.N., Knox, O.G.G., Backhouse, D., Haling, R.E. 2017. Mycorrhizal symbioses of cotton grown on sodic soils: A review from an Australian perspective. Pedosphere. 27(6), 1015–1026.

Farooq, M., Bramley, H., Palta, J.A., Siddique, K.H.M., 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Review in Plant Sciences. 30, 491-507.

Giovannetti.M, Mosse.B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytolologist. 84, 489–500.

Giri, B., Kapoor, R., Mukerji, K.G., 2005. Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New Forests. 29, 63-73.

Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E., Khodaei-Joghan, A. 2013. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agricultural Water Managment. 117, 106–114.

Gong, B., Wen, D., Vanden Langenberg, K., Wei, M., Yang, F., Shi, Q., Wang, X. 2013. Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Scientia Horticulture. 157, 1–12.

Hu, L., Wang, Z., Du, H., Huang, B., 2010. Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. Journal of Plant Physiology. 167, 103-109.

Kungu, B.J., Lasco, R.D., Cruz, L.U.D., Cruz, R.E.D., Husain, T., 2008. Effect of vesicular arbuscular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistance of senna spectabilis. Pakistan Journal of Botany. 40, 217-224.

Lambers, H., Chapin, F., Pons, T., 2008. Plant physiological ecology. Springer, New York, p 540.

Liebersbach, H., Steingrobe, B., Claassen, N., 2004. Roots regulate ion transport in the rhizosphere to counteract reduced mobility in dry soil. Plant and Soil.260, 79–88.

Leung, H.M., Wang, Z.W., Ye, Z.H., Yung, K.L., Peng, X.L., Cheung, K.C., 2013. Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: A review. Pedosphere. 23(5), 549–563.

 Li, Y., Zhao, H., Duan, B., Korpelainen, H., li, C., 2011. Effect of drought and ABA on growth, photosynthesis and antioxidant system of Continus coggygria seedling under two different light conditions. Environmental and Experimental Botany. 71, 107-113.

Liu, F., Jensen, C.R., Andersen, M.N., 2004. Drought stress effect on carbohyd rate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Research. 86, 1-13.

 Liu, H., Wang, X., Wang, D., Zou, Z., Liang, Z., 2011. Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Industrial Crops and Products. 33, 84-88.

Malakouti, M.J., Moshiri, F., Ghibi, M.N., Molavi, S., 2005. Optimum concentrations of nutrients in soil and some garden products (first part). Council policy development and efficient use of fertilizers and pesticides application of biological agriculture, Technical publication No. 406, Senate Publications, Tehran, Iran. [In Persian].

Matin, M.A., Brown, J.H. Ferguson, H., 1989. Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agronomy Journal. 81, 100-105.

Meybodi, M.M.S., Gharayazi, B., 2001. Physiological and Vegetative Aspects of Salinity Stress of Plants. Isfahan University of Technology publishing house, No. 78, Isfahan, 274 p. [In Persian with English Summery].

Min, H., Chen, C., Wei, S., Shang, X., Sun, M., Xia, R., Liu, X., Hao, D., Chen, H., Xie, Q. 2016. Identification of drought tolerant mechanisms in maize seedlings based on transcriptome analysis of recombination inbred lines. Frontiers in Plant Science. 7, 1080. Doi: 10.3389/fpls.2016.01080

Mishra, V., Herkauer, K.A., 2010. Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the midwestern united states. Agriculture and Forest Meteorology. 150, 1030-1045.

 Morte, A., Diaz, G., Rodriguez, P., Alarcon, J.J., Sanchez-Blanco, M.J., 2001. Growth and water replications in mycorrhizal and Nonmycorrhizal Pinus Halepensis plants in response to drought. Biologia plantarum. 44, 263-267.

Nagarathna, T.K., Prasad, T.G., Bagyaraj, D.J., Shadakshari, Y.G., 2007. Effect of arbuscular mycorrhiza and phosphorus levels on growth and water use efficiency in Sunflower at different soil moisture status. Journal of Agricultural Technology. 3, 221-229.

Jongrungklang, N., Toomasan, B., Vorasoot, N., Jogloy, S., Boote, K.J., 2011. Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stres. Field Crops Research. 120, 262-270.

Ponsens, J., Hanson, J., Schellberg, J., Moeseler, B.M., 2010. Characterization of phenotypic diversity, yield and response to drought stress in a collection of Rhodes grass (Chloris gayana Kunth) accessions. Field Crops Research. 118, 57-72.

Smith, S.E., Read, D.J., 2008. Mycorrhizal Symbioses, third ed. Academic Press, UK.

Widiastuti N., Wu, H., Ang, M., Zhang, D.K., 2008. The potential application of natural zeolite for grey water treatment. Desalination Journal, 218, 271-280.

Wu, Q., Xia, R., Hu, z., 2006. Effect of arbuscular mycorrhiza on the drought tolerance of poncirus Trifoliata seedlings. Frontiers of Forestry in China. 1, 100-104.

Xu, Z.Y., Ban Y.H., Jiang, Y.H., Zhang, X.L., Liu, X.Y., 2016. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: A review. Pedosphere. 26(5), 592–617

Yooyongwech, S., Samphumphuang, T., Tisarum, R., Theerawitaya, C., Cha-um, S., 2016. Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Scientia Horticulturae. 198, 107–117.

Zhang, Y., Zhong, C.L., Chen, Y., Chen, Z., Jiang, Q.B., Pinyopusarerk, C., Wu, K., 2010. Improving drought tolerance of Casuarina equisetifolia seedlings by arbuscular mycorrhizas under glasshouse conditions. New Forests. 10, 91-98.