امکان سنجی استفاده از باکتری های محرک رشد گیاه جداسازی شده از گره به منظور افزایش مقاومت گیاه یونجه (.Medicago sativa L) به تنش شوری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اصلاح نباتات دانشگاه کشاورزی و منابع طبیعی ساری

2 استادیار گروه علوم خاک پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 دانشیار گروه بیوتکنولوژی و اصلاح نباتات دانشگاه کشاورزی و منابع طبیعی ساری

4 دانشیار پژوهشگاه بیوتکنولوژی کشاورزی کرج

چکیده

با توجه به اهمیت اثرات تنش شوری در کاهش رشد گیاهان، این مطالعه با هدف بررسی اثر باکتری‌های محرک رشد گیاه (جداشده از گره‏ های گیاه یونجه) بر کاهش اثرات تنش شوری در گیاه یونجه انجام شد. بدین منظور 63 جدایه باکتریایی از گره‌های 13 نمونه گیاه یونجه کشت‌شده در مزارع استان قم جداسازی شد. میزان مقاومت به شوری و برخی ویژگی‏های محرک رشد این جدایه‏ ها مورد ارزیابی قرار گرفت. درنهایت، سه جدایه برتر شامل دو جدایه غیر ‏ریزوبیومی A36 و A37 و یک جدایه ریزوبیومی ARh29 برای آزمایش گلخانه‌ای انتخاب شدند. آزمایش گلخانه‏ ای به ‌صورت یک طرح کاملاً تصادفی در قالب فاکتوریل در سه تکرار انجام شد. سطوح شوری شامل صفر، 50، 100، 150 و 200 میلی‏مولار کلرید سدیم و سطوح باکتری شامل گیاهان تلقیح شده با جدایه‏ های A36 + A37، ARh29، A36 + A37 + ARh29، شاهد منفی (گیاهان بدون تلقیح باکتریایی و تغذیه‌شده با هوگلند فاقد نیتروژن) و شاهد مثبت (گیاهان بدون تلقیح باکتریایی و تغذیه‌شده با هوگلند حاوی نیتروژن) بودند. نتایج نشان داد سویه‏های باکتریایی در تمام سطوح شوری، توانستند وزن خشک گیاه و پرولین را در مقایسه با گیاهان بدون تلقیح باکتریایی افزایش دهند. همچنین سویه‌های باکتری جذب یون‌های پتاسیم را افزایش و جذب یون‌های سدیم را در گیاهان یونجه تحت تنش شوری کاهش دادند به ‏طوری‏که در شوری 200 میلی‏مولار، وزن خشک و میزان پرولین گیاهانی که با هر سه جدایه برتر به ‏طور هم‏‏زمان تلقیح شده بودند، 29% و 35% بیشتر از شاهد مثبت و همچنین نسبت پتاسیم به سدیم آن‌ها به میزان 36% بیشتر از شاهد مثبت بود. به ‌طور کلی، نتایج این مطالعه نشان داد که گره‏های ریشه یونجه می‏تواند حاوی باکتری‏های غیر ریزوبیومی محرک رشد گیاه و مقاوم به شوری باشد که استفاده از آن‌ها به همراه باکتری‏های ریزوبیومی می‏تواند منجر به بهبود رشد گیاه یونجه تحت تنش شوری گردد.

کلیدواژه‌ها


Almeida Lopes, K. B., Carpentieri‐Pipolo, V., Oro, T. H., Stefani Pagliosa, E., Degrassi, G., 2016. Culturable endophytic bacterial communities associated with field‐grown soybean. Journal of Applied Microbiology, 120(3), 740-755.

Baha, N., Bekki, A., 2015. An approach of improving plant salt tolerance of Lucerne (Medicago sativa) grown under salt stress: use of Bio-inoculants. Journal of Plant Growth Regulation. 34(1), 169-182.

Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39(1), 205-207.

Beck, D.P., Materon, L.A., Afandi, F., 1993. Practical Rhizobium-legume technology manual. Technical Manual. International Center for Agricultural Research in the Dry Areas ICARDA), No.19, 389p.

Berg, G., Alavi, M., Schmidt, C.S., Zachow, C., Egamberdieva, D., Kamilova, F., Lugtenberg, B. J., 2013. Biocontrol and osmoprotection for plants under salinated conditions. Molecular Microbial Ecology of the Rhizosphere. 1, 561-573.

Bhattacharyya, P.N., Jha, D.K., 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology. 28(4), 1327-1350.

Chimwamurombe, P.M., Grönemeyer, J.L., Reinhold-Hurek, B., 2016. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings. FEMS Microbiology Ecology. 92(6), fiw083

Damodaran, T., Rai, R.B., Jha, S.K., Kannan, R., Pandey, B.K., Sah, V., Sharma, D.K., 2014. Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. Journal of Plant Interactions. 9(1), 577-584.

Dilfuza, E., 2011. Indole-acetic acid production by root associated bacteria and its role in plant growth and development. In: Keller, A.H., Fallon, M.D. (eds.), Auxins: Structure, Biosynthesis and Functions. Nova Science Publishers, Inc., USA.

Döbereiner, J., 1989. Isolation and identification of root associated diazotrophs. In: Skinner, F.A., Boddey, R.M., Fendrik, I. (eds.), Nitrogen Fixation with Non-Legumes. Developments in Plant and Soil Sciences, vol 35. Springer, Dordrecht

Dobermann, A., 2007. Nutrient use efficiency. Measurement and management. In: Kraus, A., Isherwood, K. and Heffer, P. (eds.), Fertilizers Best Management Practices. Proceeding of International fertilizer Industry Association, Brussels, Belgium, 7-9 March 2007, 1-22.

Edwards, U., Rogall, T., Blöcker, H., Emde, M., Böttger, E. C., 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Aacids Research, 17(19), 7843-7853.

Egamberdieva, D., Kucharova, Z., 2009. Selection for root colonising bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils. 45(6), 563-571.

El‐Akhal, M.R., Rincón, A., Coba de la Peña, T., Lucas, M.M., El Mourabit, N., Barrijal, S., Pueyo, J.J., 2013. Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biology. 15(2), 415-421.

Elkoca, E., Kantar, F., Sahin, F., 2007. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. Journal of Plant Nutrition. 31(1), 157-171.

Etesami, H., Alikhani, H.A., 2016. Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biological Control. 94, 11-24.

Fazaeli, A., Besharati, H., 2012. Effect of salinity on some growth indices and total protein content of alfalfa genotypes inoculated with Sinorhizobium meliloti strains under greenhouse conditions. Journal of Science and Technology of Greenhouse Culture. 3(9), 25-38. [In Persian with English summary].

Glick, B.R., Penrose, D.M., Li, J., 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology. 190(1), 63-68.

Glick, B.R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J., McConkey, B., 2007. Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences. 26(5-6), 227-242.

Gordon, S.A., Weber, R.P., 1951. Colorimetric estimation of indoleacetic acid. Plant Physiology. 26(1), 192.

Kandowangko, N.Y., Suryatmana, G., Nurlaeny, N., Simanungkalit, R.D.M., 2009. Proline and abscisic acid content in droughted corn plant inoculated with Azospirillum sp. and Arbuscular mycorrhizae fungi. HAYATI Journal of Biosciences. 16(1), 15-20.

Khalifa, A.Y., Alsyeeh, A.M., Almalki, M.A., Saleh, F.A., 2016. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi Journal of Biological Sciences. 23(1), 79-86.

Khan, M. S., Zaidi, A., Wani, P. A., 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agronomy for Sustainable Development. 27(1), 29-43.

Korir, H., Mungai, N.W., Thuita, M., Hamba, Y., Masso, C., 2017. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science. 8, 141.

Ladha J.K., Barraquio W.L., Revilla L. (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. In: Ladha, J.K., de Bruijn, F.J., Malik, K.A. (eds.), Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Developments in Plant and Soil Sciences, vol 75. Springer, Dordrecht

Lai, W.A., Hameed, A., Lin, S.Y., Hung, M.H., Hsu, Y.H., Liu, Y.C., Young, C.C., 2015. Paenibacillus medicaginis sp. nov. a chitinolytic endophyte isolated from a root nodule of alfalfa (Medicago sativa L.). International Journal of Systematic and Evolutionary Microbiology. 65(11), 3853-3860.

Maas, E. V., Hoffman, G. J., 1977. Crop salt tolerance–current assessment. Journal of the Irrigation and Drainage Division. 103(2), 115-134.

Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., Borin, S., 2013. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BioMed Research International. Article ID 248078.

Martínez-Hidalgo, P., Hirsch, A.M., 2017. The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes. 1(2), 70-82.

 Marulanda, A., Barea, J.M., Azcón, R., 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation. 28(2), 115-124.

Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 59, 651-681.

Nadeem, S.M., Zahir, Z.A., Naveed, M., Arshad, M., 2009. Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Canadian Journal of Microbiology. 55(11), 1302-1309.

Ofek, M., Ruppel, S., Waisel, Y., 2006. Effects of salinity on rhizosphere bacterial communities associated with different root types of Vicia faba L.. In: Öztürk, M., Waisel, Y., Khan, M.A., Görk, G. (eds), Biosaline Agriculture and Salinity Tolerance in Plants. Birkhäuser Basel.

Okalebo, J. R., Gathua, K. W., Woomer, P. L., 2002. Laboratory methods of soil and plant analysis: a working manual second edition. TSBFCIAT and SACRED Africa. Nairobi, Kenya.

Paul, D., Nair, S., 2008. Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. Journal of Basic Microbiology. 48(5), 378-384.

Putnam, D., Russelle, M., Orloff, S., Kuhn, J., Fitzhugh, L., Godfrey, L., Long, R., 2001. Alfalfa, wildlife and the environment. California Alfalfa and Forage Association, Novato, CA. Available at Web site: http://www.calhay.org/environmental.html (verified 3 January 2007).

Rajendran, G., Sing, F., Desai, A.J., Archana, G., 2008. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresource Technology. 99(11), 4544-4550.

Rajput, L. U. B. N. A., Imran, A., Mubeen, F. A. T. H. I. A., Hafeez, F. Y., 2013. Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pakistan Journal of Botany. 45(6), 1955-1962.

Rodrı́guez, H., Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances. 17(4-5), 319-339.

Shintu, P.V., Jayaram, K.M., 2015. Phosphate solubilising bacteria (Bacillus polymyxa)-An effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill.). Tropical Plant Research. 2, 17-22.

Shrivastava, P., Kumar, R., 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 22(2), 123-131.

Sivaramaiah, N., Malik, D.K., Sindhu, S.S., 2007. Improvement in symbiotic efficiency of chickpea (Cicer arietinum) by coinoculation of Bacillus strains with Mesorhizobium sp. Cicer. Indian Journal of Microbiology. 47(1), 51-56.

Sperber, J.I., 1958. Solution of apatite by soil microorganisms producing organic acids. Australian Journal of Agricultural Research. 9(6), 782-787.

Sridevi, M., Mallaiah, K.V., Arnow, L.E., Atkin, C.L., Neilands, J.B., Phaff, H.J., Fletcher, G., 1937. A manual for the practical study of root-nodule bacteria. International Journal of Soil Science. 3(1), 531-535.

Stajković, O., De Meyer, S., Miličić, B., Willems, A., 2009. Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.). Botanica Serbica. 33(1), 107-114.

Szabados, L., Savoure, A., 2010. Proline: a multifunctional amino acid. Trends in Plant Science. 15(2), 89-97.

Tawfik, K.M., 2008. Evaluating the use of rhizobacterin on cowpea plants grown under salt stress. Research Journal of Agriculture and Biological Sciences. 4(1), 26-33.

Tejera, N.A., Soussi, M., Lluch, C., 2006. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environmental and Experimental Botany. 58(1-3), 17-24.

Upadhyay, S.K., Singh, D.P., 2015. Effect of salt‐tolerant plant growth‐promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology. 17(1), 288-293.

Vincent, J.M., 1970. A Manual for the Practical Study of Root Nodule Bacteria. Oxford, Blackwell, 164p.

 Yarnia, M., Heydari, H., Sharif Abad, F., Rahim Zadeh Khui, 2005. Effect of carbonat calcium on tolerance to salinity in alfalfa figures. Agroecological Journal (Journal in Agriculture Knowledge). 2, 9-21. [In Persian with English summary].

Younesi, O., Poustini, K., Chaichi, M.R., Pourbabaie, A.A., 2012. Effect of Growth Promoting Rhizobacteria on germination and early growth of two alfalfa cultivars under salinity stress condition. Jornal of Crops Improvement.   14, 83-97. [In Persian with English summary].

Zahran, H.H., 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews. 63(4), 968-989.