اثر تنش خشکی روی فعالیت آنزیمی آنتی‌اکسیدان و محتوای کلروفیل در ژنوتیپ‌های پیشرفته عدس (Lens culinaris Medik)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای زراعت - فیزیولوژی گیاهان زراعی دانشگاه شاهد

2 دانشیار، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شاهد

3 هیئت‌علمی دانشگاه محقق اردبیلی

4 هیئت‌علمی دانشگاه پیام نور کرج

چکیده

مطالعه حاضر جهت بررسی اثرات تنش خشکی روی فعالیت آنزیمی و محتوای کلروفیل 12 ژنوتیپ پیشرفته عدس در ایستگاه تحقیقات کشاورزی اردبیل و بخش مرکزی شهرستان گرمی در سال‌ زراعی 95/1394 به صورت کرت های خرد شده و برپایه طرح بلوک های کامل تصادفی اجرا گردید شرایط دیم و آبیاری تکمیلی به عنوان عامل اصلی و ژنوتیپ‌ها به عنوان عامل فرعی در نظر گرفته شدند. نتایج نشان داد که میزان پرولین، کاروتنوئید، محتوای کلروفیل a و b در اردبیل معنی دار و کمتر از گرمی شد اما فعالیت آنزیم پراکسیداز ، بیشتر از گرمی بود. در شرایط دیم آنزیم آسکوربات پراکسیداز بیشتر از شرایط آبیاری تکمیلی شد. عملکرد دانه در شرایط دیم 22 درصد کمتر از شرایط آبیاری تکمیلی است. میزان کاروتنوئید و محتوای کلروفیل در بافت برگ ها در گیاهان کشت شده در گرمی بیشتر از اردبیل می باشد. بیشترین میزان فعالیت آنزیم پراکسیداز مربوط به ژنوتیپ ILL6037 (بیله سوار ) و بیشترین میزان پرولین مربوط به ژنوتیپ شماره 12 بود. بیشترین میزان عملکرد دانه در منطقه گرمی و ژنوتیپ شماره 12 ثبت شد (1902 کیلوگرم در هکتار) همبستگی مثبت و معنی دار بین میزان پرولین، درصد پروتئین دانه و فعالیت آنزیم پراکسیداز وجود داشت. همچنین همبستگی مثبت و معنی دار بین عملکرد دانه با کاروتنوئید، کلروفیل‌های a، b بود اما بین عملکرد دانه و فعالیت آنزیم‌ آسکوربات پراکسیدازهمبستگی منفی وجود داشت. نتیجه گیری نهایی این بود که هر چقدر شرایط رشد برای گیاه مهیاتر شود محتوای کلروفیل گیاه بالا و عملکرد افزایش می یابد همچنین در شرایط تنش میزان پرولین و آنزیم پراکسیداز در گیاه بالا می‌رود. و باعث افزایش مقاومت ژنوتیپ ها به تنش خشکی می شود.ضمنا با دو بار آبیاری آن هم بصورت محدود، عملکرد دانه در شرایط آبیاری تکمیلی 22 درصد بیشتر از شرایط دیم شد.

کلیدواژه‌ها


Allahmoradi, P., Mansourifar, C., Saidi, M., Jalali Honarmand, S., 2013. Water deficiency and its effects on grain yield and some physiological traits during different growth stages in lentil (Lens culinaris L.) cultivars. Annals of Biological Research. 4(5), 139-145.

Arnon, A.N., 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal. 23, 112-121.

Azarpanah, A., Alizadeh, O., Dehghanzadeh, H., 2013. Investigation on proline and carbohydrates accumulation in Zea mays L. under water stress condition. Extreme life, Biospeology and Asterobiology. International Journal of the Bioflux Society. 5(1), 47-54.

Bacelar, E.A., Santaos, D.L., Moutinho-Pereira, J.M., Lopes, J.I., Goncalves, B.C., Ferreira, T.C., Correia, C.M., 2007. Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes. Plant Soil. 292, 1–12.

Bagheri, A., Goldani, M., Hassanzadeh, M., 1997. Agronomy and Breeding of Lentil (translation). Jahad Academic Publication of Mashhad.

Bajji, M., Lutts, S., Kient, J.M., 2001. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum) cultivars performing differently in arid conditions. Plant Science. 160, 669-681.

Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water stress study. Plant and Soil. 39, 205-207.

Beauchamp, C., Fridovich., 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry. 44, 276-287.

Ben Ahmed, C., Ben Rouina, B., Sensoy, S., Boukhris, M., Ben Abdallah, F., 2009. Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany. 67, 345–352.

Bettaieb, I., Hamrouni - Sellami, I., Bourgou, S., Limam, F., Marzouk, B., 2010. Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiolgiae Plantarum. 33(4), 1103-1111

Cesar, G., Frage, C. G., 2010. Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology, John Wiley and Sons Inc.

Edreva, A., 2005. Generation and scavenging of reactive oxygen species in chloroplasts: A submolecular approach. Agriculture, Ecosystems and Environment. 106, 119-133.

Farshadfar, E., Ghasempour, H., Vaezi, H., 2008. Molecular aspects of drought tolerance in bread wheat (T. aestivum). Pakistan Journal of Biological Sciences. 11(1), 118-121.

Farshadfar, A., Javadi Nia, J., 2011. Evaluation of chickpea (Cicer arietinum L.) genotypes for drought tolerance. Seedling and Breeding Journal. 1(27), 517-537.

Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R.G., Ricciardi, G.L., Borghi, B., 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science. 77, 523 -531.

Geravandi, M., Farshadfar, E., Kahrizi, D., 2011. Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. Russian Journal of Plant Physiology. 58(1), 69-75.

Gunes, A., Inal, A., Adak, M.S., Bagci, E. G., Cicek, N., Eraslan, F., 2008. Effect of drought stress implemented at pre-or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. Russian Journal of Plant Physiology. 55(1), 59-67.

Jafarzadeh, L., Omidi, H., bostani, a.a., (2013). Effect of drought stress and biofertilizer on flower yield, photosynthetic pigments and proline content of spring wheat (Calendula officinalis L.). Iranian Journal of Medicinal and Aromatic Plants. 29, 660-666.

Kanzok, S.M., Fechner, A., Bauer, H., Ulschmid, J.K., Muller, H.M., Botella- Munoz, J., Schneuwly, S., Schirmer, R., Becker, K., 2001. Substitution of the thioredoxin system for glutation reductase in Drosophila melanogaster. Science. 291, 643-646.

Kocheva, K., Gorgiev, G., 2003. Evaluation of the reaction of two contrasting barley (Hordeum vulgare L.) cultivars in response to osmotic stress with PEG 6000. Bulgarian Journal of Plant Physiology. Special Issue, 290-294.

Lata, C., Sarita, J., Sreenivasulu, N., Prasad, M., 2011. Differential antioxidative responses to ehydration-induced oxidative stress in core set of foxtail millet cultivars. Protoplasma. 248, 817-828.

Mansourifar, S., Sha'ban, M., Ghobadi, M., Sabbaghpour, S.h., 2012. Iranian Journal of Legume Research. 3(1), 53-66.

Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7, 405–410.

Monakhova, O.F., Chernyadev, I.I., 2002. Protective role of kartolin-4 in wheat plants exposed to soil drought. Applied Environmental Microbiology. 38, 373-380.

Nakano, Y., Asada, K., 1981. Hydrogen peroxide is scavenged by ascorbate – specific peroxidase in spinach chloroplasts. Plant Cell Physiology. 22, 867-880.

Niknam, V., Razavi, N., Ebrahimzadeh, H. Sharifizadeh, B., 2006. Effect of NaCL on biomass, protein and proline contents and antioxidant enzymes in seedlings and calli of two Trigonella species. Biologia Plantarum. 50(4), 591-596.

Rahbarian, R., Khavari-Nejad, R., Ganjeali, A., Bagheri, A.R., Najafi, F., 2011. Drought stress effects on photosynthesis, chlorophyll fluorescence and water. Acta Biologica Cracoviensia, Series Botanica. 53, 47-56.

Sadeghi, A., 2006. Introduction to Statistical Analysis Software SPSS14. Jehad-e-Daneshgahi Publications, Tehran, Iran. [In Persian].

Sadeghipour, O., 2001. Science of Crop Production. Medical and Sons Publications. 1, 64-72.

Shetabi, E., 2016. The paper examines the effect of drought stress on plants, International Conference on Modern Horizons in Agricultural Sciences, Natural Resources and the Environment.

Shiranirad, A., Abbasian, A., 2011. Evaluation of drought tolerance in winter rapeseed cultivars based on tolerance and sensitivity indices. Journal of Agriculture. 98, 41-48.

Sun, T., Xu, Z.C., Wu, T., Janes, M., Prinyawiwatkul, W., H, K., 2007. Antioxidant activities of different colored sweet bell peppers (Caspicum annuum L.). Food Science. 72, 98-102.

Yazici, I., Turkan, F., Sekmen, A.H., Demiral, T., 2007. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany. 61(1), 49–57.