تاثیر کودهای زیستی بر عملکرد و برخی صفات بیوشیمیایی و فیزیولوژیک جو رقم سهند تحت شرایط دیم و آبیاری تکمیلی

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه زراعت و اصلاح نباتات دانشگاه محقق اردبیلی، اردبیل

چکیده

به منظور بررسی تاثیر کودهای زیستی بر عملکرد و برخی صفات بیوشیمیایی و فیزیولوژیک جو رقم سهند تحت شرایط دیم و آبیاری تکمیلی، آزمایش فاکتوریلی در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 96-1395 در روستای ویند کلخوران اردبیل اجرا شد. فاکتورهای مورد بررسی شامل سطوح آبیاری (عدم آبیاری (شرایط دیم)، آبیاری تکمیلی در زمان 50 درصد مراحل آبستنی و سنبله ‌دهی) و کاربرد کودهای زیستی در چهار سطح (عدم کاربرد کودهای زیستی (شاهد)، کاربرد میکوریز، ازتوباکتر، کاربرد توام ازتوباکتر و میکوریز) بودند. نتایج نشان داد بیش‌ترین فعالیت آنزیم‌های کاتالاز، پلی ‌فنل ‌اکسیداز، پراکسیداز (به ترتیب 99.9، 66.9، 78.2 تغییرات جذب در میکروگرم پروتئین بر دقیقه)، محتوای پرولین و قند محلول (به ‌ترتیب 10.25 میکرو گرم بر گرم وزن تر برگ و 105.7 میلی گرم بر گرم وزن تر برگ) در کاربرد توام میکوریز و ازتوباکتر تحت شرایط دیم بدست آمد. بیش‌ترین عملکرد دانه (2682 کیلوگرم در هکتار) مربوط به آبیاری تکمیلی در مرحله آبستنی با کاربرد توام میکوریز و ازتوباکتر و کم‌ترین آن (2065 کیلوگرم در هکتار) ‌تحت شرایط دیم و عدم کاربرد کودهای زیستی بدست آمد. از این رو به نظر می‌رسد که کاربرد کودهای زیستی و آبیاری تکمیلی می‌تواند به عنوان یک روش مناسب برای افزایش عملکرد دانه جو دیم سهند به کار برده شود.

کلیدواژه‌ها


Abdel Latef, A.A., 2010. Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Research Communications. 38, 43-55.

Ahmad, P., Prasad, M.N.V., 2012. Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. Springer, New York Dordrecht Heidelberg London.

Al-Karaki, G.N., McMichael, B., Zak, J., 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza. 14, 263-269.

Asrar, A.A., Abdel-Fattah, G.M., Elhindi, K.M., 2012. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water stress conditions using arbuscular mycorrhizal fungi. Photosynthetica. 50, 305–316.

Banerjee, M.R., Yesmin,L., Vessey, J.K., 2006. Plant-growth- promoting rhizobacteria as biofertilizers and biopesticides. In: Rai, M.K. (ed.), Handbook of Microbial Biofertilizers. Food Production Press, U.S.A. pp. 137-181.

Bates, I.S., Waldern, R.P., Teare, I.D., 1973. Rapid determination of free prolin for water stress studies. Plant and Soil. 39, 205-207

Behl, R.K., Sharma, H., Kumar, V., Singh, K.P., 2003. Effect of dual inoculation of mycorrhiza and Azotobacter on above flag leaf characters in wheat. Archive of Agronomy and Soil Science. 49, 25 – 31.

Bradford, M.M., 1976. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248-254.

Calderini, D.F., Ortiz-Monasterio I., 2003. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Science. 43, 141-151.

Cardoso, I.M., Kuyper, T.W., 2006. Mycorrhizal and tropical soil fertility. Agriculture, Ecosystems and Environment. 116, 72-84.

Cassan, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., Luna, V., 2009. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L). European Journal of Soil Biology. 45, 28- 35.

Çiçek, N., Çakirlar, H., 2002. The effect of salinity on some physiological parameters in two maize cultivars. Bulgarian Journal of Plant Physiology. 28, 66-74.

Cooper, K.M., Tinker, P.B., 2003. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhiza. Uptake and translocation of phosphorus, zinc and sulfur. New Phytologist. 81, 43-52.

Dobbelaere, S., Anderleyden, J.V., Yaacov Okon, Y., 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences. 22, 107-149.

Dubios, M., Gilles, K.A., Hamilton, J.K., Roberts, P.A., Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Annals of Chemistry, 28, 350-356.

Feng, G., F. S. Zhang, C. Y. Tian, C. Tang, Z. Rengel, 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza. 12, 185-190.

Gianinazzi,S., Schuepp, H., Barea, J.M., Haselwandter, K., 2001. Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhauser, Basel. ISBN: 376436858. Also in: Mycorrhiza. 13, 53-54. Lovato, P. Book review.

Gusain, Y.S., Singh, U.S., Sharma, A.K., 2015. Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). African Journal of Biotechnology. 14, 764-773.

Hamzei, J., Seyedi, M., 2013. Response of yield and yield components of barley cultivars to supplementary irrigation under rainfed condition. Journal of Agricultural Science and Sustainable Production. 23, 159-168. [In Persian with English summary].

Huang, B., Gao, H., 2000. Root physiological characteristics associated with drought resistance in tall fescue cultivar. Crop Science. 40, 196-203.

Karo, M., Mishra, D., 1976. Catalase, peroxidase and polyphenol oxidase activity during rice leaf senescence. Plant Physiology. 57, 315-319.

Khalafallah, A.A., Abo-Ghalia, H.H., 2008. Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. Journal of Applied Sciences Research. 4, 559-569.

Liang, X., Zhang, L., Natarajan, S.K., Becker, D. F., 2013. Proline Mechanisms of Stress Survival. Antioxidant and Redox Signaling Journal. 19, 998–1011.

Ma, Y., Prasad, M. N.V., Rajkumar, M., Freitas, H., 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances. 29, 248-258.

Mandhania, S., Madan, S., Sawhney, V., 2006. Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum. 50, 227-231.

Maiti, R. K., Moreno-limon, S., Wesche-ebeling, P., 2002. Responses of some crops to various abiotic stress factors and its physiological and biochemical basis of resistances. Agricultural Reviews. 21, 155-167.

Manoharan, P., Pandi, M., Shanmugaiah, V., Gomathinayagam, S., Balasubramanian, N., 2008. Effect of vesicular arbuscular mycorrhizal fungus on the physiology and biochemical changes of five different tree seedlings grown under nursery conditions. African Journal of Biotechnology. 7, 3431-3436

Munns, R., 2002. Comparative physiology of salt and water stress. Plant, Cell and Environment. 25, 239-250.

Nadeem, S.M., Zahir, Z.A., Naveed, M., Ashraf, M., 2010. Microbial ACC-deaminase: prospects and applications for inducing salt tolerance in plants. Critical Reviews in Plant Sciences. 29, 360-393.

Naseem, H., Bano, A., 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions. 9, 689-701.

Noorieh, B., Arzanesh, M.H., Mahlegha, G., Maryam, S., 2013. The effect of plant growth promoting rhizobacteria on growth parameters, antioxidant enzymes and microelements of canola under salt stress. Journal of Applied Environmental and Biological Sciences. 3, 17-27.

Oweis, T., Hachum, A., 2004. Water harvesting and supplemental irrigation for improved water productivity for dry farming systems in West Asia and North Africa. ICARDA. Aleppo. Syria for Presentation at the 4th International Crop Science Congress 26th Sept. to 1st Oct.

Parvaiz, A., Satyawati, S., 2008. Salt stress and phyto-blochemical responses of plants. Plant Soil and Environment. 54, 89-99.

Passioura, J.B., 2007. The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany. 58, 113-117.

Porcel, R., Barea, J.M., Ruiz-Lozan, J.M., 2003. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule. New Phytology. 157, 135–143

Porcel, R., Ruiz-Lozano, J.M., 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany. 55, 1743–50.

Ranjan, R., Bohra, S.P., Jeet, A.M., 2001. Plant Senescence. Jodhpur, Agrobios, pp.18-42.

Ruiz-Lozano, J.M., 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress, new perspectives for molecular studies. Mycorrhiza. 13, 309-317.

Seyed Sharifi, R., Namvar, A., 2016. Biofertilizers in Agronomy. University of Mohaghegh Ardebil press. Ardebil. PP. 263. [In Persian].

Sharma, K.D., Kuhad, M.S., 2006. Influence of Potassium level and soil moisture regime on biochemical metabolites of Brassica Species (Brassica napus L.). Brassica Journal 8, 71-74.

Stone, L.R., Schlegel, A.J. 2006. Yield–water supply relationships of grain sorghum and winter wheat. Agronomy Journal, 98, 1359-1366.

Tuba Bicer. B., Narin Kolenderand, A., Akar, D.A., 2004. The effect of irrigation on spring-sown chickpea. Journal of Agronomy Asian Network for scientific Information. 3, 154-158.

Turan, M., Gulluce, M., Çakmak, R., Şahinm, F., 2013. Effect of plant growth-promoting rhizobacteria strain on freezing injury and antioxidant enzyme activity of wheat and barley. Journal of Plant Nutrition, 731-748.

Wang, C.J., Yang, W., Wang, C., G.u, C., Niu, D.D., Liu. H.X., Wang, Y.P., Guo, J.H., 2012. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. Plos one, 7, e52565.

Yang, J., Zhang, J., Wang, Z., Zhu, Q., Liu, L., 2001. Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agronomy Journal, 93, 196-206