تاثیر EDTA و آمونیوم مولیبدات بر افزایش کارآیی زیست فراهمی و کاهش تنش سرب توسط ذرت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم مهندسی خاک دانشکده آب و خاک دانشگاه زابل، ایران

2 دانشیار گروه علوم مهندسی خاک دانشکده آب و خاک دانشگاه زابل، ایران

3 دانشیار گروه زراعت دانشکده کشاورزی دانشگاه زابل، ایران

4 استادیار مرکز تحقیقات کشاورزی کرمان، ایران

چکیده

ورود آلاینده‌های صنعتی به خاک باعث انباشته شدن بیش از حد فلزات سنگین از جمله سرب، کادمیم، مس و روی در خاک می‌گردد. یک روش برای پاک‌سازی فلزات سنگین از خاک گیاه‌پالایی است. افزودن عوامل کلات کننده می‌تواند راندمان جذب فلزات را توسط گیاه افزایش دهد. به منظور بررسی تأثیر آمونیوم مولیبدات و اتیلن دی آمین تترا استیک اسید (EDTA) بر جذب سرب توسط گیاه ذرت، آزمایشی در قالب طرح کاملاً تصادفی با آرایش فاکتوریل با سه تکرار اجرا شد. فاکتورهای آزمایش شامل چهار سطح سرب (صفر (Pb0)، 150 (Pb1)، 300 (Pb2) و 450 (Pb3) میلی‌گرم سرب بر کیلوگرم خاک از منبع کلرید سرب) و دو نوع عامل کلات کننده آمونیوم مولیبدات (غلظت مولیبدن 10 میلی‌گرم بر کیلوگرم خاک) (A.M) و EDTA (یک گرم بر کیلوگرم خاک) (E) و شاهد بودند. نتایج نشان داد که سطوح مختلف سرب و نوع کلات‌ها اثر معنی‌داری (0.01 > P) بر وزن خشک ریشه و اندام هوایی، غلظت نسبی و جذب کل سرب ریشه و اندام هوایی داشت. آمونیوم مولیبدات باعث افزایش معنی‌دار وزن خشک ریشه و اندام هوایی شد. بیشترین غلظت سرب ریشه و اندام هوایی تحت تیمار EDTA در سطح 450 میلی گرم در کیلوگرم سرب بدست آمد. نتایج به دست آمده از مقایسه مقادیر سرب ریشه و اندام هوایی گیاه تحت تاثیر استفاده از آمونیوم مولیبدات و EDTA، نشان داد که آمونیوم مولیبدات در جذب سرب توانایی کمتری داشت درحالی‌که EDTA اثر بیشتری در افزایش تجمع این عنصر در گیاه ذرت نشان داد.

کلیدواژه‌ها


 

Alloway, B.J., 1995. Heavy Metals in Soils. Environmental Pollution. 90, 269-273.

Amouei, A., Mahvi, A., Naddafi, K., 2012. The effect of chemical additives on the uptake and accumulation of Pb and Cd in native plants of north of Iran. Journal of Mazandaran University of Medical Sciences. 86, 116-124.

Angelova, V., Ivanova, R., Delibaltova, V., Vanov, K., 2004. Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Industrial Crops and Products. 19, 197-205.

Babaeian, E., Homaee, M., 2011. Enhancing lead phytoextraction of land cress (Barbara verna) using aminopolycarboxylic acids. Journal of Water and Soil. 24, 1142-1150. [In Persian with English Summary]

Bana Araghi, N., Houdji, M., 2010. Evaluate of the potential EDTA and EDDS in enhancing phytoremediation of heavy metals in soils contaminated by corn plant, Fourth Conference on Environmental Engineering. Tehran, Tehran University, Faculty of Environmental Science. [In Persian]

Bi, Y.L., Li, X.L., Christie, P., Hu, Z.Q., Wang, M.H., 2003. Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Chemosphere. 50, 863-869.

Bouyoucos, C.J., 1997. Hydrometer method improved for making particle size analysis of soil. Agronomy Journal. 54, 464-465.

Brown, S.L., Angle, S., Baker, A.J.M., 1994. Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium contaminated soil. Journal of Environmental Quality. 23, 1151-1157.

Brunetti, G., Farrag, K., Rovira, P.S., Nigro, F., Senesi, N., 2011. Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassica napus from contaminated soils in the Apulia region Italy. Geoderma. 160, 517–523.

Cariny, T., 1995. The reuse of contaminated land. John Wiley and Sons Ltd. 219p.

Cenkci, S., Cioerci, I.H., Yildiz, M., Oezay, C., Bozdao, A., Terzi, H., 2010. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Health and Environmental Research Online. 6, 467-473.

Chen, H., Teresa, C., 2001. EDTA and HEDTA effects on Cd, Cr and Ni uptake by Helianthus annuus. Chemosphere. 45, 21-28.

Cheng, S.F., Huang, C.Y., Lin, Y.C., Lin, S.C., Chen, K.L., 2015. Phytoremediation of lead using corn in contaminated agricultural land-An in situ study and benefit assessment. Ecotoxicology and Environmental Safety. 111, 72-77.

Chorom, M., Alizadeh, A., 2009. Comparison of synthetic chelates and compost at enhancing phytoextraction of Cd, Ni and Pb from contaminated soil under canola cultivation. Journal of Water and Soil. 23, 20-29. [In Persian with English Summary]

Cho-Ruk, K., Kurukote, J., Supprung, P., Vctayasuporn, S., 2006. Perennial plants in the phytoremediation of lead-contaminated soils. Biotecnology. 5, 1-4.

Cottenie, A., 1980. Soil and plant testing as a basis of fertilizer recommendation. FAO Soils Bulletin. 38, 70-73.

Diagomanolin, M., Farhang, M., Ghazi-Khansar, M., Jafarzadeh, N., 2004. Heavy metals (Ni, Cr, Cu) in the Karoon waterway river, Iran. Toxicology Letters. 151, 63-67.

Dinakar, N., Nagajyothi, P.C., Udaykiran, Y., Damodharam, T., 2008. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. Journal of Environmental Sciences. 20, 199-206.

Dushencov, V., Kumar, P.B.A.N., Motto, H., Raskin, I., 1995. The use of plants to remove heavy metals from agueous streams. Environmental Science and Technology. 29, 1239-1245.

Evangelou, M., Ebel, M., Schaeffer, A., 2007. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity and fate of chelating agents. Chemosphere. 68, 989-1003.

Farzami, M., 2002. Investigate the physiological responses of several crops to salinity stress and cadmium, PhD thesis Azad University, Science and Research. [In Persian]

Fatahi Kiasari, A., Fotovat, A., Astaraee, A., Haghnia, Gh., 2010. Sulfuric Acid and EDTA on Phytoremediation of Lead in Soil by sunflower, corn and cotton plant. Science and Technology of Agriculture and Natural Resources (Water and Soil Sciences). 51, 1268-1285. [In Persian with English Summary]

Fodor, F., Sarvari, E., Lang, F.R., Szigeti, Z., Cseh, E., 1996. Effects of Pb and Cd on cucumber depending on the Fe-complex in the culture solution. Plant Physiology. 148, 434- 439.

Gabos, M.B., Abreu, C.A., Coscione, A.R., 2009. EDTA assisted phytoremediation of a Pb contamined soil: Metal leaching and uptake by jack beans. Scientia Agricola. 66, 506-514.

Garbisu, C., Alkorta, I., 2001. Phytoextraction: acosteffective plant based technology for the removal of metals from the environment. Bioresource Technology. 779, 229-236.

Helmke, P.A., Sparks, D.L., 1996. Lithium, sodium, potassium, cesium, and rubidium. In: Sparks, D.L., (ed.), Methods of Soil Analysis. Part 3. Chemical Methods and Processes. Madison: Soil Science of Society, pp. 551-574.

Hovsepyan, A., Greipsson, S., 2005. EDTA-Enhanced phytoremediation of lead-contaminated soil by corn. Journal of Plant Nutrition. 28, 2037-2048.

Huang, J.W., Chen, J., Berti, W.B., Cunningham, S.D., 1997. Phytoexraction of lead-contaminated Soils: Role of synthetic in lead phytoextraction. Environmental Science and Technology. 31, 800-805.

Huang, J.W., Cunningham, S.D., 1996. Lead phytoextraction species variation in lead uptake and translocation. New Phytologist. 134, 75-84.

Hutzinger, O., 1980. The Handbook of Environmental Chemistry. Vol. 3 part. A. pp. 59-107.

Jadia, C.D., Fulekar, M.H., 2008. Phytotoxicity and remediation of heavy metals by fibrous grass (sorghum). Biosciences. 10, 861-499.

Jensen, J.K., Holm, P.E., Nejrup, J., Larsen, M.B., Borggaard, O.K., 2009. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environmental Pollution. 157, 931-937.

Khodaverdi, H., Homai, M., 2008. Investigated modeling of phytoremediation of soil contaminated with Cadmium and Lead. Science and Technology of Agriculture and Natural Resources. 42, 417-426. [In Persian with English Summary]

Kim, Y., Yang, Y., Lee, Y., 2002. Pb and Cd uptake in rice roots. Physiologia Plantarum. 116, 368-372.

Kirkham, M.B., 2000. EDTA-facilitated phytoremediation of soil with heavy metals from sewage sludge. International Journal of Phytoremediation. 2, 159-172.

Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity: laboratory metals. In: Kulte, A., (ed.), Methods of soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy. Madison, WI.

Komarek, M., Tlustos, P., Szakova, J., Chrastnyb, V., Ettler, V., 2007. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere. 67, 640-651.

Lindsay, W.L., Norwell, W.A., 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America. 42, 421-428.

Liphadzi, M.S., Kirkham, M.B., 2006. Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and comoseted biosolids. African Journal of Botany. 72, 391-397.

Luo, C., Shen, Z., 2006. Enhanced phytoxtraction of Pb and other form artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere. 63, 1773-1784.

Luo, C., Shen, Z., Lou, S., Li, X., 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere. 59, 1-11.

Meers, S.E., Qadir, M., De Caritat, P., Tack, F.M.G., Du Laing, G., Zia, M.H., 2009. EDTA-assisted Pb phytoextraction. Chemosphere. 74, 1279-1291.

Mojiri, A., 2011. The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead. Journal of Biological and Environmental Sciences. 5, 17-22.

Moslehi, A., Fekri, M., Mahmoud Abadi, M., 2011. The effects of EDTA (ethylene diamine tetra-acetic acid) and municipal waste compost on different levels of lead and cadmium in the soil and phytoremediation these elements by sunflower plant. 1st National Conference on phytoremediation, Kerman, The International Center for Advanced Science and Technology and Environmental Science. [In Persian]

Motesharezadeh, B., Savaghebi, Gh., 2011. Study of Sunflower Plant Response to Cadmium and Lead Toxicity by Usage of PGPR in a Calcareous Soil. Journal of Water and Soil. 25, 1069-1079. [In Persian with English Summary].

Motesharezadeh, B., Savaghebi-Firoozabadi, Gh.R., Mirseyed Hosseini, H., Alikhani, H.A., 2010. Study of the enhanced phytoextraction of cadmium in a calcareous soil. International Journal of Environmental Research. 3, 525-532.

Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939, US Gov. Printing Office, Washington, DC.

Orcut, D.M., Nilsen, E.T., 2000. Plant Physiology under Stress. John Willy Inc.

Page, A.L., Miller, R.H., Keeney, D.R., 1982. Methods of soil analysis. Part2. 2nd ed. ASA and SSSSA. Madison, WI.

Qu, J., Song, X., Feng, Y., Cong, Q., Yuan, X., Quan, X., 2016. Stabilization of Pb, Hg, Cr, Zn in Soil with Ammonium Molybdate and Uptake by Alfalfa Plants. Academia Journal of Biotechnology. 4, 145–152.

Qu, J., Wang, L., Yuan, X., Cong, Q., Guan, Sh., 2011. Effects of ammonium molybdate on phytoremediation by alfalfa plants and (im) mobilization of toxic metals in soils. Environmental Earth Sciences. 64, 2175-2182.

Rabie, A., Mohamed, H., 2009. Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere. 76, 893-9.

Ramazani, M., Ghasemi, S., 2011. Evaluate of the phytoremediation of lead in soil by corn plant (Zea mays L). 1st National Conference on phytoremediation, Kerman, the International Center for Advanced Science and Technology and Environmental Science. [In Persian]

Rhoades, J.D., 1996. Electrical conductivity and total dissolved solids. In: Sparks, D.L., et al. (ed.), Methods of Soil Analysis. SSSA, Inc. ASA, Inc. Madison, WI, pp.417-436.

Schat, H., Sharma, R.V., 1997. Heavy metal induced accumulation of free proline in a metal tolerant and a non-tolerant ecotype of silene vulgaris. Physiologia Plantarum. 101, 477- 482.

Sekara, A., Poniedzialek, L., Ciura, J., Jedrszczyk, E., 2005. Cadmium and Lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Polish Journal of Environmental Studies. 14, 509-516.

Sharma, P., Dubey, R.S., 2005. Lead toxicity in plants. Plant Physiology. 17, 35-52.

Shen, Z.G., Li, X.D., Wang, C.C., Chen, H.M., Chua, H., 2002. Lead phytoextraction from contaminated soil with high biomass plant species. Environmental Quality. 31, 1893-1900.

Sillen, L.G., Martell, A.E., 1964. Stability constants of metal ion complexes. Special Publication No. 17. The Chemical Society. Londan.

Tariq, S.R., Ashraf, A., 2016. Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arabian Journal of Chemistry. 9, 806-814.

Tharayil, M., Pillai, H.P.S., 2013. Immobilization and mobilization effect of ammonium molybdate on phytoremediation of toxic heavy metals in soil. Acta Biologica Indica. 2, 353-360.

Thomas, G.W., 1996. Soil pH and soil acidity. In: Sparks, D.L., et al. (ed.), Methods of Soil Analysis. SSSA. Inc., ASA, Inc. Madison, WI, pp. 475-490.

Topp, G.C., Galynou, B.C., Ball, B.C., Carter, M.R., 1993. Soil water adsorption curve. In: Carter, M.R., (ed.), Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, FL, pp. 569-579.

Turgut, C., Pepe, M.K., Curight, T.J., 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution. 131, 147-154.

Ullah, R., Bakht, J., Shafi, M., Iqbal, M., Khan, A., Saeed, M., 2011. Phyto-accumulation of heavy metals by sunflower (Helianthus annuus) grown on contaminated soil. Biotechnology. 75, 17192-17198.

Walkley, A., Black, I.A., 1934. Examination of the degtjareff method determining soil organic matter and a proposed modification of the chromic acid titration method. Soil science. 34, 29-38.

Xiao, X., Tongbin, C., Zhizhuang, A., Mei, L., 2008. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: The tolerance and accumulation. Journal of Environmental Sciences. 20, 62-67.

Yan-De, J., Zhen-li, H.E., Xiao-e, Y., 2007. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Zhejiang University Science. 8, 192-207.

Zhang, H., Dang, Z., Zheng, L.C., Yi, X.Y., 2009. Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). International Journal of Environmental Science Technology. 6, 249-258.