

Original article

Journal homepage: https://escs.birjand.ac.ir تنشهكامحيطى درعلوم زراجى

Environmental Stresses In Crop Sciences

Vol. 15, No. 4, pp. 1143-1160 (Winter 2023)

http://dx.doi.org/10.22077/escs.2021.4245.1996

The effect of cadmium stress on photosynthetic pigments and secondary metabolites in borage (*Borago officinalis* L.)

P. Sheikhzadeh^{1*}, N. Zare¹, Sh. Abootalebi²

1. Associate Professor, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2. Ph.D. Student, Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil, Iran

Received 5 April 2021; Accepted 16 May 2021

Extended abstract

Introduction

Heavy metals are one of the most important abiotic stresses which can have detrimental effects on the growth, metabolic pathways, and physiological and biochemical characteristics of plants. Today, the accumulation of heavy metals in agricultural lands has an increasing trend that can affect the production and quality of agricultural products as well as human health. Among heavy metals, cadmium (Cd) is one of the most important worldwide environmental pollutants. It can rapidly be taken up by plants and accumulates in plant tissues, and easily enter the food chain; so this heavy metal is a serious threat to humans, animals, plants, and environmental sustainability. Secondary metabolites play vital protective and adaptive roles in plants in response to biotic and abiotic stresses. In this study, the effect of cadmium stress on the physiological characteristics and secondary metabolite production, and cadmium accumulation in borage (*Borago officinalis* L.) was investigated under hydroponic conditions.

Materials and methods

Borage seeds were germinated in Petri dishes, and the 5–6 cm seedlings were then transferred to hydroponic containers containing half of the Hoagland nutrient solution with continuous aeration. The cultures were maintained in a growth chamber with 16 hours of light and 25 ± 2 °C. Cadmium treatments were applied at five levels (0, 81, 162, 243, and 324 μ M cadmium) using cadmium nitrate (Cd (NO3)2 .4H2O) at the 6-7 leaves stage. European borage seedlings were sampled at five-time intervals (12, 24, 48, 72, and 108 hours after cadmium stress) treatments and cadmium content, physiological characteristics, and secondary metabolites of leaf samples were measured.

Results and discussion

The results showed that the amount of photosynthetic pigments, chlorophyll index (SPAD), chlorophyll fluorescence, and secondary metabolites in borage leaves were significantly influenced by cadmium stress. With increasing cadmium concentration and exposure duration, the absorption and accumulation of cadmium in borage leaves increased significantly. Cadmium stress reduced the amount of chlorophyll a and b, total chlorophyll, and carotenoids at all sampling times in comparison with the control treatment. The maximal quantum efficiency of photosystem II and the chlorophyll index (SPAD) were decreased with increasing the cadmium concentration and exposure duration so that the lowest

^{*} Corresponding author: Parisa Sheikhzadeh; E-Mail: sheikhzadehmp@gmail.com

value of these traits was observed at 108 hours after treatment with 324 μ M cadmium. With increasing the cadmium stress severity, the amount of secondary metabolites including anthocyanin, phenol, and total flavonoids and also the amount of soluble sugars were significantly increased in the borage leaves. The highest amount of these metabolites was observed at 108 hours after treatment with 324 μ M cadmium.

Conclusion

In general, the results of this study showed that increasing the concentration and duration of cadmium stress negatively influenced plant photosynthesis by reducing the content of photosynthetic pigments and increasing chlorophyll fluorescence. On the other hand, increasing the concentration and duration of cadmium stress, increased the cadmium absorption and accumulation in the borage leaves as well as the amount of secondary metabolites.

Keywords: Efficiency of photosystem II, Heavy metals, Medicinal plant, Secondary metabolites

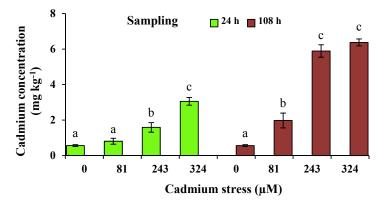


Fig. 1. The effect of different concentrations of cadmium on cadmium accumulation in borage leaves at 24 and 108 hours after treatment. The data are the mean of 3 replicates and the error bars indicate the standard error. Distinct letters in each sampling time indicate a significant difference at the 5% level of probability.

			Mean of Squares				
Sampling			Chlorophyll	hlorophyll Total			
time	SOV	df	a	Chlorophyll b	chlorophyll	Carotenoid	
	Cadmium stress	4	0.166 ^{ns}	0.243**	0.638**	0.218**	
12 h	Error	10	0.115	0.019	0.105	0.027	
	CV (%)		2.34	5.03	1.88	3.86	
	Cadmium stress	4	3.105**	0.141*	4.360**	0.751**	
24 h	Error	10	0.174	0.029	0.124	0.047	
	CV (%)		2.92	6.19	2.08	5.48	
	Cadmium stress	4	5.297**	0.365**	8.392**	1.797**	
48 h	Error	10	0.045	0.009	0.044	0.009	
	CV (%)		1.50	3.52	1.25	2.26	
72 h	Cadmium stress	4	17.009**	0.383**	21.764**	3.067**	
	Error	10	0.016	0.049	0.043	0.008	
	CV (%)		0.95	8.19	1.29	2.34	
	Cadmium stress	4	54.587**	2.255**	77.481**	5.427**	
108 h	Error	10	0.071	0.030	0.135	0.024	
	CV (%)		2.34	7.63	2.69	4.50	

 Table 1. Analysis of variance of the effects of cadmium stress on photosynthetic pigments in borage leaves at different exposure duration

*, ** and ns: significant at a probability level of 5% and 1%, and non-significant at probability level of 5%, respectively

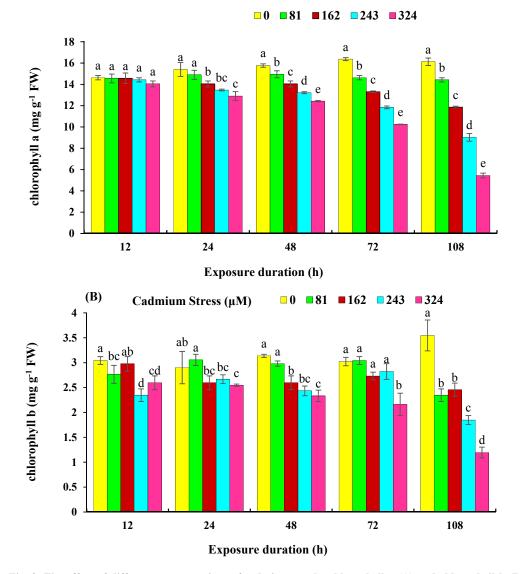


Fig. 2. The effect of different concentrations of cadmium on the chlorophyll a (A) and chlorophyll b (B) content in borage at different exposure times. The data are the mean of 3 replicates and the error bars indicate the standard error. Distinct letters in each sampling time indicate a significant difference at the 5% level of probability.

2

1

0

12

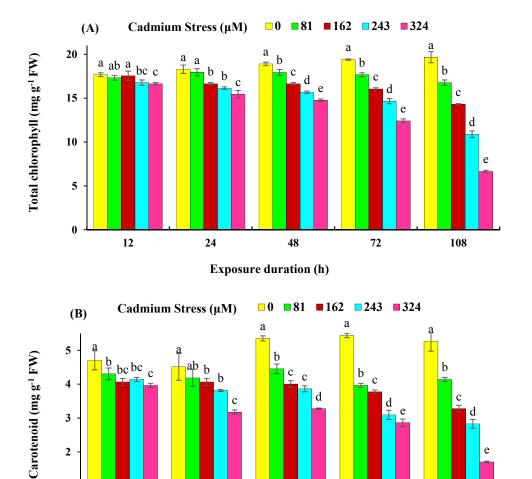


Fig. 3. The effect of different concentrations of cadmium on the total chlorophyll (A) and carotenoids (B) content at different times after treatment in borage. The data are the mean of 3 replicates and the error bars indicate the standard error. Distinct letters in each sampling time indicate a significant difference at the 5% level of probability.

Exposure duration (h)

24

48

72

108

			Mean of Squares				
Sampling						П	Cholorophyl
time	SOV	df	Fo	Fm	Fv	F _v /F _m	l Index
	Cadmium stress	4	1.767 ^{ns}	927.233 ^{ns}	930.733 ^{ns}	0.00007^{**}	4.048**
24 h	Error	10	6.267	2017.800	2002.467	0.00001	0.425
	CV (%)		1.13	3.96	1.48	0.44	2.19
	Cadmium stress	4	31.933**	7359.733**	6424.733*	0.0001**	30.701**
48 h	Error	10	3.800	1087.067	1129.00	0.00003	0.455
	CV (%)		0.87	2.91	3.69	0.70	2.50
1	Cadmium stress	4	265.900**	68145.900**	60653.100**	0.001**	42.876**
108 h	Error	10	25.333	3314.600	3438.133	0.00005	0.519
	CV (%)		2.27	5.41	7.01	0.90	2.74

 Table 2. Analysis of variance of the effect of concentrations of cadmium on chlorophyll fluorescence and chlorophyll index (SPAD) in different exposure duration

*, ** and ns: significant at a probability level of 5% and 1% and non-significant at probability level of 5%, respectively

Table 3. The effect of different concentrations of cadmium on minimum fluorescence (F0), maximum fluorescence (Fm), variable fluorescence (Fv), maximal quantum efficiency of photosystem II (Fv / Fm) in borage at different exposure duration

	Cadmium concentration				
Sampling time	(µM)	Fo	Fm	$\mathbf{F}_{\mathbf{v}}$	F _v /F _m
	0	219.0 ±1.47 a	1144.0±12.16 a	923.0 ±11.01 a	0.814±0.0014 a
	81	220.0 ±2.08 a	1135.7±11.69 a	915.7 ±10.89 a	0.813±0.0017 a
24 hours	162	220.0 ±2.57 a	1140.0±28.02 a	883.3 ±48.84 a	0.81±0.0032 a
	243	220.6 ±1.45 a	1148.3±24.16 a	928.3 ±22.24 a	0.809±0.0020 a
	324	221.0 ±1.15 a	1126.7±13.77 a	907. 7±14.71 a	0.801±0.0017 b
	0	217.0±2.22 c	1173.7±18.85 a	948. 7±19.83 a	0.817±0.0012 a
	81	220.3±0.89 bc	1172.3±12.17 a	948.0±13.01 a	0.814±0.0028 ab
48 hours	162	222.6±1.45 ab	1145.0±11.06 ab	922.3±12.17 a	0.813±0.0011 ab
	243	224.3±1.88 a	1104.3±23.39 bc	884.0±24.26 ab	0.804±0.0046 bc
	324	225.0±1.35 a	1057.7±25.27 c	840.7±24.12 b	0.794±0.0046 c
	0	206.67±1.45 c	1192.7±29.97 a	961.3±30.88 a	0.820±0.0014 a
	81	219.67±2.33 b	1177.7±8.64 a	950.3±9.17 a	0.820±0.0017 a
108 hours	162	220.33±3.53 b	1134.7±15.16 a	914.3±17.94 a	0.821±0.0046 a
	243	227.33±2.72 ab	955.0±11.67 b	735.3±9.68 b	0.801±0.001 b
	324	231.33±3.84 a	853.0±26.72 b	646.3±16.23 b	0.789±0.0078 b

Data are mean of 3 replicates \pm standard error. In each sampling time, means followed by the same letter(s) are not significantly different (p \leq 0.05).

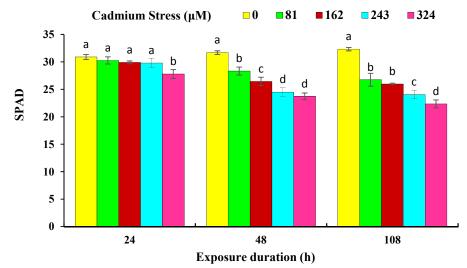


Fig. 4. The effect of cadmium concentration on chlorophyll index (SPAD) in borage at different exposure duration. The data are the mean of 3 replicates and the error bars indicate the standard error. Distinct letters in each sampling time indicate a significant difference at the 5% level of probability.

Sampling		df	Mean of Squares			
time	SOV	ui	Anthocyanin	Phenol	Flavonoid	soluble sugar
12 h	Cadmium stress	4	0.109 ^{ns}	206.943**	20.487**	0.00002 ^{ns}
	Error	10	0.042	6.710	1.168	0.00005
	CV (%)		7.37	20.46	6.41	14.41
24 h	Cadmium stress	4	0.128^{*}	322.982**	101.119**	0.002**
	Error	10	0.028	11.909	3.839	0.00004
	CV (%)		6.01	21.88	9.61	18.21
	Cadmium stress	4	0.290^{**}	1160.196**	147.755**	0.041**
48 h	Error	10	0.020	4.723	3.223	0.00008
	CV (%)		4.65	6.97	7.73	8.88
72 h	Cadmium stress	4	0.075^{*}	1226.450**	75.193**	0.072^{**}
	Error	10	0.037	4.127	4.610	0.0001
	CV (%)		6.58	6.01	9.40	5.40
108 h	Cadmium stress	4	0.181*	1618.484**	179.229**	0.202**
	Error	10	0.036	6.088	7.088	0.0001
	CV (%)		6.28	6.66	9.08	2.85

Table 4. Analysis of variance of the effect of cadmium stress on secondary metabolites and soluble sugars in borage at different exposure duration

*, ** and ns: significant at a probability level of 5% and 1% and non-significant at probability level of 5%, respectively

Time after treatment	Cadmium concentration	Anthocyanin	Phenol	Flavonoid	Soluble Suger
ti cutilicit	μΜ	μmol g ⁻¹		mg g ⁻¹	
	0	2.60±0.16 a	2.05±0.33 c	13.07±0.41 c	0.0133±0.003 a
	81	2.65±0.10 a	6.53±0.72 c	15.34±0.53 b	0.0151±0.004 a
12 hours	162	2.69±0.06 a	14.47±2.26 b	17.61±0.32 a	0.0155±0.003 a
	243	2.91±0.14 a	17.73±2.28 b	18.99±0.93 a	0.0186±0.005 a
	324	3.05±0.07 a	22.50±0.4 a	19.23±0.72 a	0.0200±0.004 a
	0	2.51±0.11 c	2.14±0.33 d	13.09±0.68 c	0.0137±0.002 d
	81	2.70±0.07 bc	9.14±0.92 c	18.63±0.41 b	0.0144±0.003 d
24 hours	162	2.77±0.06 abc	17.92±3.18 b	19.11±0.47 b	0.0334±0.004 c
	243	2.84±0.12 ab	20.82±2.67 b	22.15±1.04 b	0.0532±0.004 b
	324	3.08±0.07 a	28.84±1.26 a	28.96±2.11 a	0.0694±0.005 a
	0	2.68±0.06 b	2.52±0.321e	14.57±0.66 d	0.0179±0.002 d
	81	2.89 ± 0.08 ab	20.91±0.56 d	19.4±1.31 c	0.0215±0.004 d
48 hours	162	2.94±0.07 ab	36.97±2.26 c	22.2±0.78 c	0.0536±0.005 c
	243	2.98±0.09 ab	43.22±0.89 b	27.11±1.13 b	0.1298±0.006 b
	324	3.12±0.10 a	52.19±1.23 a	32.78±1.37 a	0.2977±0.007 a
	0	2.67±0.07 c	3.36±0.32 e	16.12±0.54 c	0.0504±0.002 d
	81	2.76±0.10 c	26.91±0.56 d	19.58±1.44 c	0.0825±0.003 c
72 hours	162	3.08±0.13 b	35.85±1.54 c	23.53±1.24 b	0.1040±0.007 c
	243	3.31±0.12 ab	49.20±0.94 b	26.69±1.32 ab	0.2758±0.005 b
	324	3.36±0.09 a	54.15±1.78 a	28.24±1.41 a	0.4145±0.004 a
	0	2.73±0.10 c	3.36±0.16 e	18.81±0.83 d	0.1199±0.005 e
	81	2.90±0.14 bc	27.44±0.64 d	26.39±1.40 c	0.1580±0.005 d
108 hours	162	2.97±0.04 bc	38.46±1.86 c	29.44±1.36 bc	0.2645±0.005 c
	243	3.11±0.09 ab	52.84±1.81 b	31.95±2.54 b	0.5231±0.006 b
	324	3.39±0.13 a	63.11±1.71 a	39.95±0.90 a	0.7278±0.009 a

Table 5. The effect of cadmium concentration on the amount of secondary metabolites and soluble sugars in borage at different exposure duration

In each column, means which followed by the same letter(s) are not significantly different ($p \le 0.05$)