

Original article

Journal homepage: https://escs.birjand.ac.ir

Environmental Stresses In Crop Sciences

Vol. 15, No. 4, pp. 1005-1021 (Winter 2023)

http://dx.doi.org/10.22077/escs.2021.4183.1986

Genome-wide investigation of CIPK gene family in *Aeluropus littoralis* L.

M. Arab¹, H. Najafi Zarrini², Gh. Nematzadeh³, S.H. Hashemipetroudi^{4*}

1. M.Sc. Student in Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Iran

2. Associated Professor, Department of Biotechnology, Sari Agricultural Sciences and Natural Resources University (SANRU),

- Sari, Iran
- 3. Professors, Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU). Iran
- 4. Assistant Professors, Department of Genetic Engineering and Biology, Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran

Received 1 March 2021; Accepted 10 April 2021

Extended abstract

Introduction

The CBL-CIPK signaling network, which decodes calcium signals triggered by environmental stresses, is one of the most crucial signal transduction systems in plants. Proteins bound to calcium ions serve as sensor molecules, receiving cellular calcium ion signals and transmitting messages to the downstream gene cascade. Because of its tolerance to abiotic stresses, especially salinity stress, and its relationship to cereals, many researchers are interested in the molecular mechanisms of the halophyte grass *Aeluropus littoralis*. The in-silico discovery of the AlCIPK gene family and their expression profile in responses to salinity stress were considered in this analysis due to this plant's genome sequence's availability.

Materials and methods

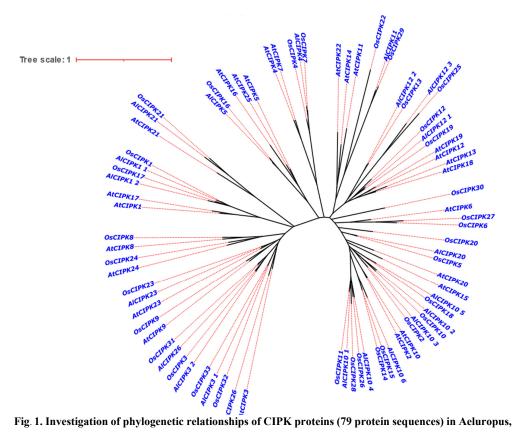
Using local TblastN program, the CIPK protein sequences of *Arabidopsis thaliana* gene families were blasted against *A. littoralis* genomic sequences. BlastP was used to verify all sequences after redundant sequences were removed. The detected proteins were analyzed in various protein domain databases such as Pfam, PROSITE, and InterProScan to identify, annotate, and interpret domain structures. In all of AlCIPK, the SALAD approach was used to perform similarity clustering based on motifs patterns. The exon and intron arrangement were determined by comparing the predicted CDS against AlCIPK genomic sequences in the gene structure display server (GSDS). Expasy-Prosite was used to determine the domain structure. A signal-dependent software based on SignalP 5.0 was used to identify signal peptides in proteins. Exploring the expression pattern of AtCIPK genes at various growth and developmental stages using Genevestigator (https://www.genevestigator.com/gv/plant.jsp) and the EFP browser (http://bar.utoronto.ca/). Transcriptome research was used to examine the expression patterns of AlCIPK genes in leaf and root tissues under salinity stress and recovery conditions.

Results and discussion

Based on sequence homology with *Arabidopsis* genes, **20** CIPK genes were discovered in the *A. littoralis* genome. The Arabidopsis AtCIPK homologous proteins were used to name the Aeluropus CIPK genes.

* Corresponding author: Seyyed Hamidreza Hashemipetroudi; E-Mail: shr.hashemi@sanru.ac.ir

According to subcellular localization analysis, these proteins are active in a specific cellular compartment. The phylogenetic tree of 20 AlCIPK, 26 AtCIPK, and 33 OsCIPK showed that these 79 CIPKs are closely related. Exon/intron structure analysis was used to separate all AlCIPK into intron-poor and intron-rich classes. The expression of 25 AtCBL gene family members in 68 samples under salinity stress was compared using Genevestigator tools, which revealed that all 25 genes tested in different developmental/ environmental stages, including control and stress, had different expression patterns. A tissue-specific expression pattern was discovered after analyzing these AtCBL genes' expression pattern in both root and shoot tissues. In salinity stress and recovery conditions, the expression profile pattern of AlCIPK genes in leaf and root tissues was distinct. The distinct expression profiles of the AlCIPK gene family confirmed their functional and structural convergence.


Conclusion

Systematic study of members of this gene family revealed that CIPKs in Halophyte grass, i.e., *A. littoralis*, share main CIPK family characteristics with other monocotyledonous and dicotyledonous plants, which are likely important factors in this species' adaptation and stress tolerance. The lack of homologous AtCIPK24 genes in the Aeluropus genome is a key finding in this study, suggesting that the CBL-CIPK gene network in this plant has a distinct regulatory function, necessitating further studies. Future studies using the RT-qPCR method to examine the expression of AlCBL and AlCIPK gene family genes under different abiotic stresses could aid in understanding the mechanism of SOS-related gene expression regulation. This study's findings reveal the functional characteristics of the calcium gene family and provide essential information for future research on their functional roles.

Keywords: Calcium sensor, CBL-CIPK, CBL-interacting protein kinase, Salt stress, Signaling network

	Homology parameter to Arabidopsis thaliana					Domain organization					
							Pfam		SMART (SM00220)	PROSITEE	
Gene Name	Accession no.	Accession no.	Identity %	Coverage %	Total Score	PF02149 KA	PF03822 Naf	PF00069 PKinase	Ps50816	(PS50011)	
AICIPK1.1	Alg4127	AT3G17510.1	56.39%	94%	507					- HALLOW STATE	
AICIPK1.2	Alg7902	AT3G17510.1	55.53%	90%	473				• 0,00		
AICIPK3.1	Alg7566	AT2G26980.4	75.51%	98%	701				6 m		
ALCIPK3.2	Alg12052	AT2G26980.4	70.59%	94%	655				0.186		
AICIPK4	Alg15044	AT4G14580.1	50.47%	97%	404						
AICIPK5	Alg5583	AT5G10930.1	54.88%	95%	507				S,IKC		
AICIPK10.1	Alg12300	AT5G58380.1	61.14%	%84	594				0,000		
ALCIPK10.2	Alg9524	AT5G58380.1	59.87%	100%	572				S.INC	- CONTRACTOR -	
AICIPK10.3	Alg4701	AT5G58380.1	58.76%	%97	545				STR.		
AICIPK10.4	Alg3308	AT5G58380.1	58.72%	%91	581				- QURK -		
AICIPK10.5	Alg13906	AT5G58380.1	56.26%	%95	499				577%		
AICIPK10.6	ALg9805	AT5G58380.1	49.45%	%98	432				<u>dix</u>		
AICIPK11	Alg2698	AT2G30360.1	45.65%	95%	365				<u>O</u> m	Personal and the second	
AICIPK12.1	Alg8115	AT4G18700.1	65.48%	92%	652				••• •••	i i	
AICIPK12.2	Alg10559	AT4G18700.1	59.02%	94%	583					-	
AICIPK12.3	Alg11449	AT4G18700.1	51.27%	96%	478				- Visc		
AICIPK20	Alg11347	AT5G45820.1	64.79%	96%	599				0.0K	- ZOTTENTENCE	
AICIPK21	Alg8711	AT5G57630.1	53.63%	95%	434				<u>ÓIK</u>		
AICIPK23	Alg1003	AT1G30270.1	81.46%	94%	740				0.00	CONTRACTOR STORE	
AllCIPK26	Alg7179	AT5G21326.1	71.66%	96%	662				6.Me	TRACK STARLEY	

Table 1. Characteristics of domains identified in the *AlCIPK* gene family.

Arabidopsis and rice

on palmitoylation <u>KY</u> 446 <u>RRKDWRVCLEGTREG</u>
446 RRKDWRVCLEGTREG
RRKDWRVCLEGTREG
RY 3 MECRGKILM
RKL 449 PAAAILGCA
GRY 233 IFKADFSCPSWFSTS
GRQ
D
207 IGKAEFKCPGWFSTD 425 KQQQQQSC
10 CT KGEAEAECTRSSLLG 396 KLKVMKNCKSFKNPK
317
KLEDVATCSKLTVKK 255 RLIRGLLCPDPARRI
AL LE
EAA
GR

Table 2. Physicochemical properties of CIPK proteins in A. littoralis.

	Logo	E-value'	Sites	Width
1.	DGLLHTzCGIPeyyAPEyherkGYDGakeDxWSCGVJLEXLeaGXLPFer	7.0e-654	19	50
2.	*JEp=ABBXF9QLJ=AY=XCH=BGYXHRD+KPEN+L+D==90+KY\$DFGL\$A	1.3e-630	19	50
з.	⋴ <u>⋽</u> ⋽ ⋷ ⋫⋭⋤⋷⋼⋨⋈⋭⋫⋏⋭ <mark>⋕</mark> БЍ⋏⋏⋼⋷⋷ <mark>⋿</mark> ⋏⋈ ⋓⋧⋭⋷⋭⋎⋎⋷⋭⋎⋫⋿ ∊х⋖ <mark>⋵</mark> ⋳⋿	1.0e-384	18	41
4.	╶ ╗ ӟѥ҂Ҏѽӗ҄҄҄҄҄҄҄҄҄҄҄Ҕ҂ <mark>҄</mark> ѼѲ҄҈҂҅ ^Ҟ Ѽӟ҄Ѽ҈ӑЀ҄҄҄҅Ҟ҄҄҄҄Ҳ҂҃҂҄҄҅Ѷ҄҄ ӗ҂҂҅҄ӏӗӟѽ҄Ҡ҅Ѵ҄ҬҞ҂ҟ҅ѽҟ҂҅ҟ҂ҟ҂ҟ҂Ҍ҅҂ӗ҂҂	8.7e-369	18	50
5.	_⋳ ⋑⋷⋩⋍⋈⋏⋭⋉ ⋎∊ ⋭⋵⋭⋭⋩⋩⋩ <mark>⋏</mark> ⋍⋒⋵⋛ ^{⋇⋩⋩} ⋭⋭ <mark>⋷⋷⋍⋭⋷⋷⋻⋵⋳</mark> ⋏⋇⋭⋎⋭	3.5e-351	19	41
6.	_⋻ j≋≜ <mark>6</mark> ⋴⋩ð⋍⋫⋷⋋⋬ ⋩ ⋢⋎⋵⋸⋋⋎ <mark>∁</mark> ⋬⋼⋍⋎⋏ <u></u> Б⋗ह⋉⋷⋬ <mark>∁</mark> Ҕ⋍⋫⋸⋸⋸⋬⋭	3.3e-248	19	41
7.	_⋳ <u></u> ġĕ⋭⋍⋭⋤⋎⋧ ⋑⋼⋭ ⋵⋼⋼⋎∊⋼ <mark>⋉⋏⋭</mark> ⋹⋟⊎⋳⋼⋦⋬⋭	5.3e-118	19	31
8.	-a⊳NAFells∻s	8.7e-076	19	11
9.	_⋽ ⋽ ⋜⋼⋭⋎⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳⋳	4.7e-073	20	19
10.	⋳ <mark>⋷⋭⋷∊⋷⋉</mark> Б↑⊼⋒⋵⋒⋳⋶⋭	1.4e-060	13	15
Sequence AICIPK20	III E-value III			
AICIPK20				
AICIPK23	1.3e-295 I			
AICIPK3.1	4.ie-202 I		_	
AICIPK3.2	1.5e-290 I			
AICIPK10.1			_	
AICIPK10.2			-	
AICIPK12.1				
AICIPK10.3	3.4e-264 I			
AICIPK10.5	1.8+248 X			
AICIPK12.2				
AICIPK10.6	1.5+20 I	-	_	
AICIPK1.1	7.3+220 1			
AICIPK12.3 AICIPK5	9.45.270			
AICIPKS				
AICIPK21	6.6c:107 I			
AICIPK11	7.6e-177 I			
AICIPK4	2.2e-175 I			
	a da	400		soo

Fig. 2. Motif analysis and domain search in AlCIPK protein sequences. (A) Motif logo of AlCIPK protein in the MEME program. The size of each amino acid indicates its frequency in the respective domain. (B) the distribution of identified motifs in each protein sequence.

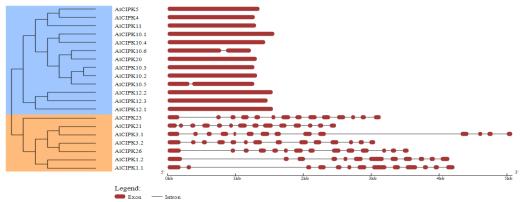
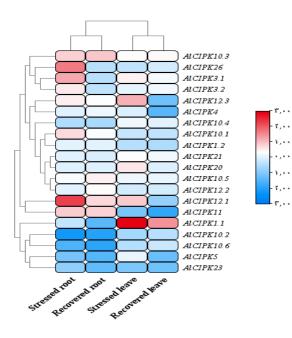
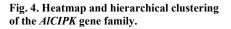




Fig. 3. Analysis of gene structure and phylogenetic tree of AlCIPK gene family

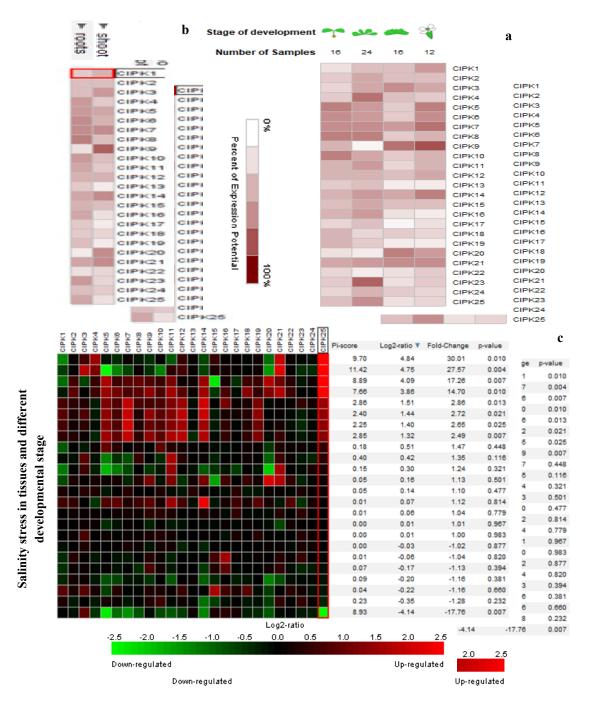


Fig. 5. Investigation of *AtCIPK* gene family expression profile in Arabidopsis model plant using Genevestigator. Microarray expression analysis of *AtCIPK1* to *AtCIPK25* genes (a) in 4 different developmental stages, (b) root and shoot tissues, (c) in different salinity stresses