

Original article

Environmental Stresses In Crop Sciences Env. Stresses Crop Sci. Vol. 15, No. 3, pp. 781-799 (Fall 2022)

http://dx.doi.org/10.22077/escs.2021.3940.1941

Physiology of lentil (*Lens culinaris* Medik.) genotypes against freezing stress

J. Nabati^{1*}, A.A. Mahmodi², S.M. Mirmiran³, S. Feyzabadi⁴, M. Mohammadi⁵, A. Nezami⁶

- 1. Assistant Professor, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Iran
- 2. Faculty of Horticulture and Agronomy Research Department, Khorasan Razavi Agriculture and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
- 3. Assistant Professor, Khorasan-e-Razavi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Mahhad, Iran
- 4. Former M.Sc. Student, Department of Agronomy and Plant Breeding, Agricultural Colleges, Ferdowsi University of Mashhad, Iran
- 5. M.Sc. Student, Department of Agronomy and Plant Breeding, Agricultural Colleges, Ferdowsi University of Mashhad, Iran
- 6. Professor, Faculty of Agriculture and Research Center for Plant Sciences, Ferdowsi University of Mashhad, Iran

Received 30 November 2020; Accepted 3 January 2021

Extended abstract

Introduction

Lentil is usually sowned in late winter and early spring. In this conditions, flowering and seed filling stage usually coincide with late drought stress and high temperature which reduce seed yield. Therefore, supplemental irrigation at the end of the growth season is necessary to overcome this problem. But since in Iran, lentil is mostly cultivated as a rainfed crop in mountain areas and slopes, supplemental irrigation is impossible. By autumn cultivation, plant maturity could be accelerated and higher efficiency of precipitation use, coincidence of growth stages with favorable weather conditions and finally increasing plant height and yield could be achieved. On the other hand, autumn cultivation exposes the plants to sever winter coldness; so, using freezing tolerant cultivars is necessary. The aim of the present study was to identify the role of antioxidants and physiological parameters in improving the cold tolerance of lentil genotypes in controlled conditions.

Materials and methods

The study was conducted in autumn and winter of 2018 in research greenhouse of research center for plant sciences, Ferdowsi University of Mashhad, Mashhad, Iran. the experiment was conducted as factorial based on completely randomized design with three replications in controlled conditions. Experimental factors were consisted of 20 lentil genotypes and three freezing temperatures (0, -18 and -20°C). Seeds were sown in October and Seedlings were kept in a natural environment for four months and then were transferred to a thermogradiant freezer. Gas exchange parameters (photosynthesis rate, evapotranspiration, substomatal CO2 concentration, stomatal and mesophilic conductance) as well as water use efficiency, relative water content of leaf, photosynthetic pigments, DPPH radical scavenging activity, Anthocyanin, total phenol and soluble carbohydrates were measured before the plants were exposed to freezing temperatures. Survival percentage, plant height, leaf area and plant dry weight were measured four weeks after freezing stress. Lethal temperature 50% of plants according to the survival

percentage (LT50su), Reduced temperature 50% of height plant (HT50), Reduced temperature 50% of leaf area (RLAT50) and Reduced temperature 50% of dry matter (RDMT50) were also determined. **Results**

Results indicated that in -18°C, 14 genotypes had 100% survival while in -20°C, all the genotypes were killed. Based on the studied parameters, lentil genotypes were divided in four groups by cluster analysis. Survival percentage in first, second and fourth group was superior compared to the total average. According to the antioxidant activity, metabolites and pigments concentration, plant height, leaf area and dry weight, genotypes in the first (MLC84, MLC407, MLC454) and second (MLC38, MLC303, MLC74, MLC334) groups were relatively superior compared to the other groups. Principal component analysis (PCA) showed that the first component explained 32.77% of changes in water use efficiency, carotenoids, chlorophyll a/b ratio, mesophilic conductance, photosynthesis, survival percentage, plant height, leaf area and dry weight while the second component explained 16.31% of changes in the concentration of chlorophylls a and b, total pigments, soluble carbohydrates, DPPH radical scavenging activity, phenol, anthocyanin, osmotic potential, evapotranspiration and stomatal conduction. Genotypes of MLC74, MLC334, MLC11, MLC84, MLC403, MLC164, MLC38, MLC286, MLC286and MLC469 were superior according to the survival percentage and regrowth.

Conclusion

The correlation between concentration of chlorophyll b, carotenoids and photosynthesis rate with survival percentage showed that these traits are suitable indicators for determining cold tolerance of lentil genotypes before exposing to freezing stress. Results of cluster analysis and group mean comparison also indicated the relative superiority of MLC84, MLC407, MLC454 and second MLC38, MLC303, MLC74, MLC334 in most studied parameters. Generally, these genotypes are recommended to be used for complementary studies of freezing tolerance in field conditions in cold regions.

Keywords: Antioxidant activity, Metabolites, Osmotic potentials, Survival

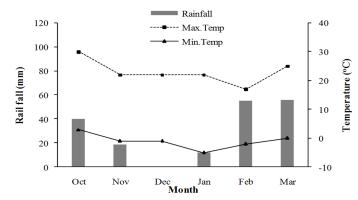


Fig. 1. Rainfall, minimum and maximum temperature during fall and winter in 2018-2019, Mashhad

cezing under contr	Survival percentage							
Genotype	Freezi	ng temperat	ure (°C)					
	0	-18	-20					
MLC8 [†]	100 ^a	53.0°	0.00 ^d					
MLC11	100 ^a	100 ^a	0.00 ^d					
MLC13	100 ^a	100 ^a	0.00 ^d					
MLC17	100 ^a	100 ^a	0.00 ^d					
MLC33	100 ^a	100 ^a	0.00 ^d					
MLC38	100 ^a	100 ^a	0.00 ^d					
MLC47	100 ^a	100 ^a	0.00 ^d					
MLC70	100 ^a	100 ^a	0.00 ^d					
MLC74	100 ^a	67.3 ^b	0.00 ^d					
MLC83	100 ^a	0.00 ^d	0.00 ^d					
MLC84	100 ^a	100 ^a	0.00 ^d					
MLC103	100 ^a	0.00 ^d	0.00 ^d					
MLC286	100 ^a	100 ^a	0.00 ^d					
MLC303	100 ^a	100 ^a	0.00 ^d					
MLC334	100 ^a	100 ^a	0.00 ^d					
MLC407	100 ^a	100 ^a	0.00 ^d					
MLC409	100 ^a	0.00 ^d	0.00 ^d					
MLC454	100 ^a	64.0 ^b	0.00 ^d					
MLC469	100 ^a	100 ^a	0.00 ^d					
MLC472	100 ^a	100 ^a	0.00 ^d					
S.O.V	df	Mean s	quares					
Genotype (G)	19	136	53**					
Temperature	2	1670)91**					
G×T	38	136	ó4**					
Error	120	33	5.4					
C.V (%)	-	9.67						

 Table 1. Interaction effects of genotype and freezing temperature on survival percentage of lentil genotypes after freezing under controlled conditions

Means fallowed by the same letter are not significantly different (p<0.05). **:Significant (P \leq 0.01), C.V: Coefficient Variation.

	Photosyn	thetic	Evapotranspiration	Stomatal	CO ₂	Mesophyll	
Genotype	rate		rate	conductance	substomatal	conductance	
	(µmol.m	⁻² s ⁻¹)	(mmol.m ⁻² s ⁻¹)	(mol.m ⁻² s ⁻¹)	(ppm)	(mol.m ⁻² s ⁻¹)	
MLC8 [†]	17.6	f	3.25 ^{c-g}	0.394 ⁱ⁻¹	393ª	0.051 ^{b-e}	
MLC11			1.70 ^{gh}	0.364 ^{j-k}	386ª	0.034 ^{e-g}	
MLC13	11.0 ^j	ik	2.04 ^{d-h}	0.516 ^{g-i}	430 ^a	0.022 ^g	
MLC17	18.6	ef	2.80 ^{c-h}	0.671 ^{c-f}	436ª	0.041 ^{d-g}	
MLC33	16.5 ^f	-h	2.94 ^{c-h}	0.679 ^{c-f}	418ª	0.034 ^{e-g}	
MLC38	30.7	a	7.47 ^a	1.44 ^a	429ª	0.064 ^{ab}	
MLC47	14.8 ¹	hi	2.52 ^{d-h}	0.489 ^{h-j}	406 ^a	0.028^{fg}	
MLC70	17.9	f	1.39 ^h	0.434 ⁱ⁻¹	402 ^a	0.044 ^{c-f}	
MLC74	16.9 ^t	fg	5.54 ^b	0.789 ^{bc}	420 ^a	0.043 ^{c-f}	
MLC83	12.0	j	3.62 ^{cd}	0.844 ^b	430 ^a	0.034 ^{e-g}	
MLC84	25.0	c	3.44 ^{c-e}	0.635 ^{e-g}	394ª	0.064 ^{ab}	
MLC103	12.4	j	2.85 ^{c-h}	0.441 ^{i-k}	427ª	0.050 ^{b-e}	
MLC286	17.9	f	2.32 ^{d-h}	0.655 ^{d-f}	421ª	0.069 ^{ab}	
MLC303	29.0	a	3.38 ^{c-f}	0.784 ^{b-d}	386ª	0.071 ^a	
MLC334	14.6 ¹	hi	4.18 ^{bc}	0.752 ^{b-e}	409 ^a	0.033 ^{e-g}	
MLC407	27.0	b	3.16 ^{c-g}	0.601 ^{f-h}	383ª	0.072ª	
MLC409	9.19	k	2.19 ^{d-h}	0.306 ¹	382 ^a	0.023 ^g	
MLC454	20.8	d	3.02 ^{c-g}	0.423 ⁱ⁻¹	384 ^a	0.061 ^{a-c}	
MLC469	13.0	ij	1.91 ^{e-h}	0.442 ^{i-k}	417 ^a	0.035 ^{d-g}	
MLC472	19.99	le	1.78 ^{f-h}	0.346 ^{kl}	442 ^a	0.053 ^{a-d}	
S.O.V	df			Aean squares			
Genotype	19 10	7**	5.97**	0.196**	1159 ^{ns}	0.001**	
Error	40 1.2	26	0.693	0.005	1268	0.001	
C.V (%)	- 6.	24	27.1	11.6	8.69	16.0	

Table 2. Photosynthetic properties and mesophyll conductance in lentil genotypes before freezing stress under control
condition

[†]MLC: Mashhad Lentil Collection Means fallowed by the same letter are not significantly different (p<0.05). ns: non- significant, **:Significant ($P \le 0.01$), C.V: Coefficient Variation

Genoty	pe	WUE	RWC	Osmotic potential
		(µmolCO2.mMol H2O)	(%)	(MPa)
MLC8	t	5.84 ^{c-f}	75.7 ^{ab}	-2.80 ^{d-f}
MLC1	1	8.53 ^b	69.0 ^{a-e}	-3.65 ^{bc}
MLC1	3	5.49 ^{c-f}	76.0 ^{ab}	-2.02 ^f
MLC1	7	6.02 ^{c-e}	70.7 ^{a-e}	-2.64 ^{d-f}
MLC3	3	5.95 ^{c-e}	77.0 ^{ab}	-2.54 ^{d-f}
MLC3	8	4.16 ^{e-g}	79.0ª	-2.90 ^{c-e}
MLC4	7	6.53 ^{b-e}	73.7 ^{a-c}	-3.14 ^{b-d}
MLC7	0	13.4 ^a	76.7 ^{ab}	-2.27 ^{ef}
MLC7	4	3.06 ^g	59.7 ^e	-3.09 ^{b-e}
MLC8	3	2.90 ^g	68.7 ^{a-e}	-2.75 ^{d-f}
MLC8	4	7.32 ^{b-d}	68.3 ^{a-e}	-2.78 ^{d-f}
MLC10	13	4.37 ^{e-g}	75.0 ^{ab}	-2.53 ^{d-f}
MLC28	86	6.37 ^{b-e}	67.7 ^{a-e}	- 2.66 ^{d-f}
MLC30	13	8.68 ^b	68.0 ^{a-e}	-5.05ª
MLC33	34	3.55 ^{fg}	66.0 ^{b-e}	-2.79 ^{d-f}
MLC40	7	7.60 ^{bc}	61.3 ^{de}	-2.47 ^{d-f}
MLC40	19	4.60 ^{e-g}	62.7 ^{c-e}	-3.81 ^b
MLC45	54	6.44 ^{b-e}	78.0^{a}	-2.92 ^{c-e}
MLC46	i9	5.10 ^{d-g}	74.0 ^{ab}	-2.78 ^{d-f}
MLC47	2	13.9 ^a	71.7 ^{a-d}	-2.30 ^{ef}
S.O.V	df	N	lean squares	
Genotype	19	26.2**	96.9**	1.31**
Error	40	1.52	33.3	0.175
$C \mathbf{V} (0)$. 0		0.14	
C.V (%)	-	19.0	8.14	14.5

 Table 3. Water use efficiency, relative water content, and osmotic potential in lentil genotypes before freezing stress under control condition.

Means fallowed by the same letter are not significantly different (p<0.05). **:Significant (P \leq 0.01), C.V: Coefficient Variation

Genotype		Cha	Chb	Cartenoieds	Cha/Chb	Total pigmen
			mg.gfw ⁻¹			mg.gfw ⁻¹
MLC8 [†]		0.768 ^j	0.473 ^{ij}	0.205^{f}	1.86 ^a	1.55 ^{h-j}
MLC11		1.27d ^{-f}	0.690 ^{ef}	0.388 ^{b-d}	1.84 ^a	2.34 ^{c-f}
MLC13		0.847^{ij}	0.460 ^{ij}	0.292 ^e	1.78 ^a	1.43 ^{ij}
MLC17		1.15 ^{e-h}	0.745 ^{de}	0.354 ^d	1.93 ^a	2.34 ^{c-f}
MLC33		0.858 ^{h-j}	0.482 ^{ij}	0.289 ^e	2.04 ^a	1.54 ^{h-j}
MLC38		1.18 ^{e-g}	0.760 ^{cd}	0.386 ^{b-d}	2.00 ^a	2.61 ^{cd}
MLC47		0.987 ^{f-j}	0.475 ^{ij}	0.380 ^{cd}	1.83 ^a	1.84 ^{f-i}
MLC70		1.09 ^{e-i}	0.621 ^{gh}	0.381 ^{cd}	2.23 ^a	1.97 ^{e-h}
MLC74		1.48 ^{cd}	0.673^{fg}	0.443 ^b	2.07 ^a	2.75 ^{bc}
MLC83		0.965 ^{g-j}	0.351 ^k	0.296 ^e	1.96 ^a	1.30 ^j
MLC84		1.81 ^b	0.837 ^b	0.495 ^a	1.85 ^a	3.13 ^b
MLC103		0.884 ^{g-j}	0.440 ^j	0.235^{f}	1.85 ^a	1.74 ^{g-j}
MLC286		1.34 ^{c-e}	0.647 ^{f-h}	0.394 ^{b-d}	2.10 ^a	2.37 ^{c-e}
MLC303		1.12 ^{e-i}	0.609 ^h	0.392 ^{b-d}	1.99 ^a	2.13 ^{d-g}
MLC334		1.02 ^{f-j}	0.734 ^{de}	0.301 ^e	1.79 ^a	2.32 ^{c-f}
MLC407		1.85 ^b	0.928 ^a	0.546 ^a	2.33 ^a	3.77 ^a
MLC409		1.15 ^{e-h}	0.512 ⁱ	0.295 ^e	2.20 ^a	2.30 ^{c-f}
MLC454		2.35 ^a	0.801 ^{bc}	0.426 ^{bc}	2.14 ^a	3.84 ^a
MLC469		1.60 ^{bc}	0.665 ^{f-h}	0.541 ^a	2.43 ^a	2.80 ^{bc}
MLC472		1.10 ^{e-i}	0.468 ^{ij}	0.384 ^{b-d}	2.35ª	1.92 ^{e-i}
S.O.V	df			Mean squares		
Genotype(G)	19	0.481**	0.073**	0.025**	0.118 ^{ns}	1.50**
Error	40	0.024	0.001	0.001	0.113	0.073
C.V (%)	-	12.6	4.89	10.4	16.6	11.7

Table 4. Photosynthesis pigments in lentil genotypes before freezing stress under control condition

Means fallowed by the same letter are not significantly different (p<0.05). ns: non- significant, **:Significant ($P \le 0.01$), C.V: Coefficient Variation

		DPPH			
Genotype		DPPH	Antocyanin	Phenol	Soluble carbohydrates
	mg.gfw ⁻¹		mmol.gfw ⁻¹		mg.gfw ⁻¹
¹ MLC8		1.180°	1.400 ^b	159 ^{d-h}	0.109 ⁱ
MLC11		1.060 ^d	1.640 ^a	174 ^{c-g}	0.250 ^{de}
MLC13		0.599 ^g	0.782 ^{ef}	99 ^j	0.116i
MLC17		0.960 ^{de}	0.585 ^{gh}	127 ^{h-j}	0.161 ^{gh}
MLC33		0.579 ^g	0.486 ^{hi}	105 ^j	0.117 ⁱ
MLC38		0.670 ^g	0.566 ^{gh}	136 ^{g-j}	0.236 ^e
MLC47		0.967 ^{de}	0.758 ^{ef}	187 ^{b-f}	0.132 ^{hi}
MLC70		1.010 ^d	0.630 ^{f-h}	165 ^{c-h}	0.120 ⁱ
MLC74		1.890 ^a	0.973 ^d	162 ^{d-h}	0.331 ^b
MLC83		0.826^{f}	0.881 ^{de}	222 ^b	0.132 ^{hi}
MLC84		0.834^{f}	0.652^{fg}	160 ^{d-h}	0.338 ^b
MLC103		0.452 ^h	0.334 ⁱ	110 ^{ij}	0.121 ⁱ
MLC286		0.871 ^{ef}	0.659 ^{fg}	149 ^{f-i}	0.110 ⁱ
MLC303		0.982 ^{de}	0.351 ⁱ	206 ^{bc}	0.188^{fg}
MLC334		1.680 ^b	1.530 ^{ab}	201 ^{b-d}	0.293°
MLC407		1.051 ^d	1.140 ^c	225 ^{ab}	0.448^{a}
MLC409		0.623 ^g	0.481 ^{hi}	173 ^{c-g}	0.282 ^{cd}
MLC454		0.595 ^g	0.758 ^{ef}	261ª	0.352 ^b
MLC469		0.813 ^f	0.947 ^d	196 ^{b-e}	0.217 ^{ef}
MLC472		0.636 ^g	0.361 ⁱ	156 ^{e-h}	0.126 ^{hi}
S.O.V	df		Mean	squares	
Genotype	19	0.384**	0.435**	5357**	31225**
Error	40	0.005	0.008	492	406
C.V (%)	-	7.66	11.2	13.2	9.65

Table 5. DPPH, antocyanin, phenol and soluble carbohydrates in lentil genotypes before freezing stress under control condition

Means fallowed by the same letter are not significantly different (p<0.05). **:Significant (P \leq 0.01), C.V: Coefficient Variation

	Plan	t Height (cm)	Leaf a	rea (mm ² .pl	lant ⁻¹)	Biomass (mg.plant ⁻¹) Freezing temperature (°C)			
	Freezing	temperat	ure (°C)	Freezing	g temperatı	ıre (°C)				
Genotype	0	-18	-20	0	-18	-20	0	-18	-20	
MLC8 [†]	17.9 ^{a-e}	4.59 ¹	0.00 ^m	377 ^{m-p}	247 ^q	0.00 ^r	50.0 ^{i-p}	46.7 ^{m-q}	0.00 ^s	
MLC11	16.8 ^{b-i}	17.1 ^{b-g}	0.00 ^m	382 ^{m-p}	584 ^{b-g}	0.00 ^r	68.9 ^{c-e}	47.5 ^{1-p}	0.00 ^s	
MLC13	15.9 ^{c-j}	16.8 ^{b-i}	0.00^{m}	584 ^{b-g}	519 ^{f-j}	0.00 ^r	59.6 ^{e-1}	44.7 ^{n-q}	0.00 ^s	
MLC17	16.9 ^{b-h}	17.8 ^{a-f}	0.00^{m}	571 ^{b-h}	591 ^{b-g}	0.00 ^r	92.9ª	58.9 ^{e-m}	0.00 ^s	
MLC33	13.9 ^{h-j}	15.6 ^{d-j}	0.00 ^m	524 ^{f-j}	436 ^{j-n}	0.00 ^r	66.8 ^{c-f}	72.0 ^{b-d}	0.00 ^s	
MLC38	14.6 ^{g-j}	15.1 ^{d-j}	0.00 ^m	351 ^{n-p}	508 ^{g-k}	0.00 ^r	60.9 ^{d-j}	57.9 ^{e-m}	0.00 ^s	
MLC47	15.1 ^{d-j}	13.9 ^{h-j}	0.00 ^m	542 ^{e-i}	647 ^{bc}	0.00 ^r	48.6 ^{j-p}	35.7 ^q	0.00 ^s	
MLC70	14.9 ^{d-j}	11.0 ^k	0.00 ^m	531 ^{f-i}	238 ^q	0.00 ^r	38.3 ^{pq}	51.8 ^{i-o}	0.00 ^s	
MLC74	13.7 ^{ij}	6.75 ¹	0.00 ^m	656 ^b	229 ^q	0.00 ^r	48.0 ^{k-p} 51.0 ^{i-o}	18.8 ^r 0.00 ^s	0.00 ^s 0.00 ^s	
MLC83	17.3 ^{a-g}	0.00 ^m	0.00 ^m	533 ^{f-i}	0.00 ^r	0.00 ^r				
MLC84	20.2ª	18.8 ^{a-c}	0.00 ^m	331 ^p	341 ^{op}	0.00 ^r	35.9 ^q	60.1 ^{d-k}	0.00s	
MLC103	17.8 ^{a-f}	0.00 ^m	0.00 ^m	553 ^{c-h}	0.00 ^r	0.00 ^r	40.7 ^{o-q}	0.00 ^s	0.00 ^s	
MLC286	15.0 ^{d-j}	19.7 ^{ab}	0.00 ^m	632 ^{b-e}	640 ^{b-d}	0.00 ^r	74.4 ^{bc}	75.3 ^{bc}	0.00 ^s	
MLC303	13.9 ^{h-j}	14.9 ^{d-j}	0.00 ^m	654 ^b	424 ^{k-o}	0.00 ^r	53.9 ^{g-n}	74.3 ^{bc}	0.00 ^s	
MLC334	15.8 ^{c-j}	14.7 ^{f-j}	0.00 ^m	587 ^{b-g}	370 ^{m-p}	0.00 ^r	53.5 ^{h-n}	66.5 ^{c-f}	0.00 ^s	
MLC407	17.5 ^{a-g}	17.7 ^{a-g}	0.00 ^m	837 ^a	481 ^{h-1}	0.00 ^r	97.2ª	51.9 ^{i-o}	0.00 ^s	
MLC409	17.7 ^{a-g}	0.00 ^m	0.00 ^m	630 ^{b-e}	0.00 ^r	0.00 ^r	61.4 ^{d-i}	0.00 ^s	0.00 ^s	
MLC454	14.9 ^{e-j}	9.88 ^k	0.00 ^m	604 ^{b-f}	397 ^{1-p}	0.00 ^r	55.5 ^{f-n}	82.3 ^b	0.00 ^s	
MLC469	17.3 ^{a-g}	18.1 ^{a-d}	0.00 ^m	508 ^{g-k}	573 ^{b-h}	0.00 ^r	56.2 ^{f-n}	65.6 ^{c-h}	0.00 ^s	
MLC472	13.6 ^j	16.2 ^{c-j}	0.00 ^m	453 ^{i-m}	546 ^{d-h}	0.00 ^r	65.9 ^{c-g}	56.0 ^{f-n}	0.00 ^s	
S.O	.V	df			Μ	ean squar	·es			
Genotype(G)		19)	42.9**		55799**			110**	
(Temperature (T)	2		4244**	4244**		4683986**		9247**	
G×T		38		49.2**	9.2** 60235**			789**		
Error		12	0	2.45		2358			39.7	
(C.V (%)	-		16.5		15.7			17.6	

 Table 6. Interaction effects of genotype and freezing temperature on Plant height, Leaf area and dry weight of lentil genotypes after freezing under controlled conditions

Means fallowed by the same letter are not significantly different (p < 0.05). **:Significant ($P \le 0.01$), C.V: Coefficient Variation.

Table 7. Lethal temperature 50% of plants according to the survival percentage (LT_{50su}), Reduced temperature 50% of height plant ($^{R}HT_{50}$), Reduced temperature 50% of leaf area (RLAT₅₀) and Reduced temperature 50% of dry matter (RDMT₅₀) in lentil genotypes after freezing stress under control condition

زنوتيپ Genotype	i	LT _{50su}	RHT ₅₀	RLAT ₅₀	RDMT ₅₀
MLC8 [†]		-16.8 ^b	-12.1 ^b	-16.2°	-18.7 ^d
MLC11		-19.0°	-18.8 ^d	-18.4°	-18.5 ^d
MLC13		-19.0°	-18.9 ^d	-18.7°	-18.5 ^d
MLC17		-19.0°	-18.9 ^d	-19.0°	-18.3 ^d
MLC33		-19.0°	-18.9 ^d	-18.9°	-18.9 ^d
MLC38		-19.0°	-18.8 ^d	-19.0°	-18.8 ^d
MLC47		-19.0°	-18.8 ^d	-18.9°	-18.6 ^d
MLC70		-19.0°	-17.8 ^d	-18.9°	-19.0 ^d
MLC74		-17.0 ^b	-16.3°	-12.9 ^b	-15.0°
MLC83		-9.00 ^a	-9.03a	-9.03ª	-9.07 ^a
MLC84		-19.0°	-18.8 ^d	-19.0°	-13.6 ^b
MLC103		-9.00 ^a	-8.97 ^a	-11.3 ^{ab}	-9.00 ^a
MLC286		-19.0°	-19.0 ^d	-16.2°	-18.9 ^d
MLC303		-19.0°	-19.0 ^d	-18.9°	-18.9 ^d
MLC334		-19.0°	-18.8 ^d	-19.0°	-18.9 ^d
MLC407		-19.0°	-18.9 ^d	-18.4 ^c	-17.8 ^d
MLC409		-9.00 ^a	-9.20 ^a	-10.0 ^{ab}	-9.03 ^a
MLC454		-17.5 ^{bc}	-18.5 ^d	-18.4 ^c	-13.7 ^b
MLC469		-19.0°	-19.0 ^d	-18.9°	-19.0 ^d
MLC472		-19.0°	-18.9 ^d	-19.0°	-18.7 ^d
S.O.V	df		Mear	n squares	
Genotype	19	39.1**	41.4**	44.1**	40.3**
Error	40	1.02	0.809	4.11	0.464
C.V (%)	-	-5.87	-5.33	-12.0	-4.11

Means fallowed by the same letter are not significantly different (p<0.05). **:Significant (P \leq 0.01), C.V: Coefficient Variation

		1	2	3	4	5	6	7	8	9	10
1	Survival	1									
2	Photosynthetic rate	0.48^{*}	1								
3	Evapotranspiration rate	-0.04 ^{ns}	0.47^{*}	1							
4	CO2 substomatal	0.03 ^{ns}	-0.20 ^{ns}	0.18 ^{ns}	1						
5	Stomatal conductance	0.17 ^{ns}	0.54^{*}	0.89**	0.32 ^{ns}	1					
6	Mesophyll conductance	0.27 ^{ns}	0.85**	0.31 ^{ns}	-0.21 ^{ns}	0.31 ^{ns}	1				
7	WUE	0.44 ^{ns}	0.29 ^{ns}	-0.57**	-0.11 ^{ns}	-0.40 ^{ns}	0.29 ^{ns}	1			
8	RWC	0.14 ^{ns}	0.02 ^{ns}	-0.11 ^{ns}	0.26 ^{ns}	0.02 ^{ns}	-0.07 ^{ns}	0.18 ^{ns}	1		
9	Osmotic potential	-0.07 ^{ns}	0.22 ^{ns}	0.07 ^{ns}	-0.50*	0.06 ^{ns}	0.15 ^{ns}	-0.04 ^{ns}	-0.34 ^{ns}	1	
10	Ch a	0.17 ^{ns}	0.39 ^{ns}	0.10 ^{ns}	-0.42 ^{ns}	-0.05 ^{ns}	0.50^{*}	0.05 ^{ns}	-0.20 ^{ns}	0.04 ^{ns}	1
11	Ch b	0.49^{*}	0.61**	0.29 ^{ns}	-0.38 ^{ns}	0.25 ^{ns}	0.54^{*}	0.05 ^{ns}	-0.26 ^{ns}	0.03 ^{ns}	0.76
12	Carotenoids	0.50^{*}	0.47^{*}	0.10 ^{ns}	-0.22 ^{ns}	0.08 ^{ns}	0.49^{*}	0.23 ^{ns}	-0.30 ^{ns}	0.09 ^{ns}	0.78
13	Ch a/Ch b	0.07 ^{ns}	0.14 ^{ns}	-0.14 ^{ns}	-0.04 ^{ns}	-0.19 ^{ns}	0.26 ^{ns}	0.39 ^{ns}	-0.12 ^{ns}	-0.05 ^{ns}	0.43
14	Total pigment	0.24 ^{ns}	0.50^{*}	0.23 ^{ns}	-0.46*	0.06 ^{ns}	0.54^{*}	0.01 ^{ns}	-0.29 ^{ns}	0.08ns	0.94
15	DPPH	0.20 ^{ns}	0.04 ^{ns}	0.31 ^{ns}	-0.15 ^{ns}	0.16 ^{ns}	-0.02 ^{ns}	-0.18 ^{ns}	-0.57**	0.15 ^{ns}	0.03
16	Anthocyanin	0.14 ^{ns}	-0.17 ^{ns}	0.06 ^{ns}	-0.33 ^{ns}	-0.10 ^{ns}	-0.19 ^{ns}	-0.22 ^{ns}	-0.24 ^{ns}	-0.05 ^{ns}	0.08
17	Phenol	-0.10 ^{ns}	0.20 ^{ns}	0.06 ^{ns}	-0.55*	-0.08 ^{ns}	0.28 ^{ns}	0.03 ^{ns}	-0.30 ^{ns}	0.35 ^{ns}	0.60
18	Soluble carbohydrates	0.07 ^{ns}	0.36 ^{ns}	0.33 ^{ns}	-0.54*	0.11 ^{ns}	0.31 ^{ns}	-0.18 ^{ns}	-0.54*	0.16 ^{ns}	0.77
19	Plant height	0.86**	0.39 ^{ns}	-0.13 ^{ns}	-0.01 ^{ns}	0.08 ^{ns}	0.29 ^{ns}	0.30 ^{ns}	0.02 ^{ns}	-0.11 ^{ns}	0.30
20	Leaf area	0.73**	0.27 ^{ns}	-0.13 ^{ns}	0.02 ^{ns}	0.02 ^{ns}	0.22 ^{ns}	0.15 ^{ns}	-0.11 ^{ns}	0.02 ^{ns}	0.28
21	Dry weight	0.75**	0.50*	-0.05 ^{ns}	-0.07 ^{ns}	0.12 ^{ns}	0.45*	0.29 ^{ns}	0.10 ^{ns}	-0.02 ^{ns}	0.34

9

	11	12	13	14	15	16	17	18	19	20	21
11 Ch b	1										
12 Carotenoids	0.71^{**}	1									
13 Ch a/Ch b	0.20 ^{ns}	0.55*	1								
14 Total pigment	0.89**	0.78^{**}	0.41 ^{ns}	1							
15 DPPH	0.29 ^{ns}	0.15 ^{ns}	-0.16 ^{ns}	0.14 ^{ns}	1						
16 Anthocyanin	0.26 ^{ns}	0.05^{ns}	-0.25 ^{ns}	0.14 ^{ns}	0.62**	1					
17 Phenol	0.35 ^{ns}	0.44 ^{ns}	0.3 ^{2ns}	0.54^{*}	0.26 ^{ns}	0.33 ^{ns}	1				
18 Soluble carbohydrates	0.78^{**}	0.62**	0.23 ^{ns}	0.87^{**}	0.33 ^{ns}	0.32 ^{ns}	0.55^{*}	1			
19 Plant height	0.58**	0.58**	0.04^{ns}	0.36 ^{ns}	0.01^{ns}	0.15 ^{ns}	-0.09 ^{ns}	0.18^{ns}	1		
20 Leaf area	0.41 ^{ns}	0.50^{*}	0.22 ^{ns}	0.34 ^{ns}	0.11 ^{ns}	0.07^{ns}	0.09 ^{ns}	0.13 ^{ns}	0.67**	1	
21 Dry weight	0.56^{*}	0.40 ^{ns}	0.25 ^{ns}	0.41 ^{ns}	-0.02 ^{ns}	0.09 ^{ns}	0.08 ^{ns}	0.16 ^{ns}	0.74**	0.78^{**}	1

ns, * and **: non-significant and significant in the probability levels of 5%, and 1%, respectively

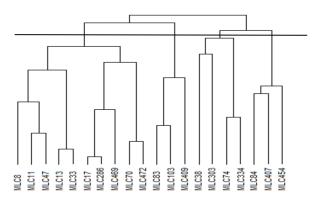


Fig. 2. Cluster grouping of lentil genotypes based on studied characteristic under controlled conditions. MLC: Mashhad Lentil Collection

	Group							
	1		2		3		4	
Genotypes	MLC84, MLC407, MLC454		MLC38, MLC303, MLC74, MLC334		MLC83, MLC103. MLC409		MLC8. MLC11, MLC13, MLC33, MLC47, MLC17, MLC286, MLC469, MLC70, MLC472	
صفات Traits	Group mean	Deviation from mean	Group mean	Deviation from mean	Group mean	Deviation from mean	Group mean	Deviation from mean
Survival (%)	62.7	2.92	63.9	4.20	33.3	-26.4	65.1	5.37
Photosynthetic rate (µmol.m ⁻² s ⁻¹)	24.2	6.25	22.8	4.79	11.17	-6.82	16.2	-1.74
Evapotranspiration rate (mmol.m ⁻² s ⁻¹)	3.34	0.157	5.14	1.96	3.06	-0.123	2.38	-0.796
CO2 substomatal (ppm)	387	-22.4	411	1.27	413	3.16	415	5.27
Stomatal conductance (mmol.m ⁻² s ⁻¹)	0.553	-0.047	0.940	0.340	0.530	-0.070	0.499	-0.101
Mesophyll conductance (mmol.m ⁻² s ⁻¹)	0.066	0.020	0.052	0.006	0.034	-0.012	0.041	-0.005
WUE (µmolCO2.mMol H2O)	7.12	0.625	4.86	-1.64	3.96	-2.54	7.73	1.23
RWC (%)	69.2	-1.711	68.2	-2.77	68.8	-2.16	73.2	2.27
Osmotic potential (MPa)	2.70	-0.224	3.46	0.534	3.03	0.107	2.75	-0.179
Cha (mg.gfw ⁻¹)	2.00	0.763	1.20	-0.040	1.00	-0.241	1.10	-0.140
Chb (mg.gfw ⁻¹)	0.855	0.237	0.694	0.075	0.434	-0.184	0.573	-0.046
Carotenoids (mg.gfw ⁻¹)	0.489	0.118	0.381	0.009	0.275	-0.096	0.361	-0.010
Cha/Chb	2.11	0.080	1.96	-0.066	2.01	-0.023	2.04	0.009
Total pigment (mg.gfw ⁻¹)	3.58	1.28	2.45	0.153	1.78	-0.519	2.01	-0.289
DPPH (mg.gfw ⁻¹)	0.827	-0.087	1.30	0.390	0.634	-0.280	0.87	-0.046
Anthocyanin (mmol.gfw ⁻¹)	0.851	0.055	0.85	0.059	0.565	-0.230	0.83	0.029
Phenol (mg.gfw ⁻¹)	215	47.6	176	8.51	168	0.733	150	-17.9
Soluble carbohydrates (mg.gfw ⁻¹)	379	170	262	53.2	178	-30.5	146	-63.2
Plant height (cm)	11.0	1.52	9.12	-0.366	5.86	-3.63	10.3	0.78
Leaf area (mm ² .plant ¹⁻)	332	22.1	315	4.66	191	-120	338	27.4
Dry weight (mg.plant ⁻¹)	42.5	6.78	36.1	0.39	17.0	-18.8	39.2	3.44

Table 9. Mean and deviation from mean of groups in cluster analysis for traits in Lentil genotypes under controlled conditions

MLC: Mashhad Lentil Collection

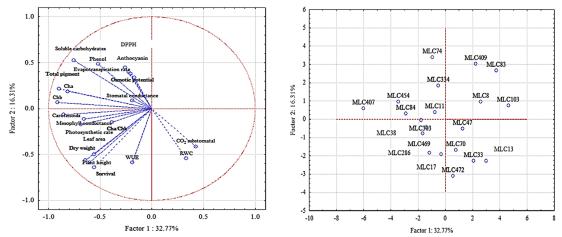


Fig 3. Biplot based on two major principal component factors. MLC: Mashhad Lentil Collection