

Original article

امديطي درعلوم زرعى

Environmental Stresses In Crop Sciences Env. Stresses Crop Sci. Vol. 15, No. 3, pp. 641-656 (Fall 2022)

http://dx.doi.org/10.22077/escs.2021.4016.1953

# Effect of zinc sulfate foliar application on morphological characteristics and yield of red beans (*Phaseolus vulgaris* L.) under different carbon dioxide- temperature and water stress

## S. Fallah<sup>1</sup>, Kh. Azizi<sup>2\*</sup>, H. Eisvand<sup>3</sup>, O. Akbarpour<sup>4</sup>, N. Akbari<sup>4</sup>

- 1. PhD Student in Crop Ecology, Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, Lorestan University, Iran
- 2. Professor, Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, Lorestan University, Iran
- 3. Associate Professor, Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, Lorestan University, Iran
- 4. Assistant Professor, Department of Agriculture and Plant Breeding, Faculty of Agriculture and Natural Resources, Lorestan University, Iran

Received 29 December 2020; Accepted 5 March 2021

### **Extended** abstract

#### Introduction

Climate change (temperature, rainfall and flood patterns, etc.) has major and negative effects on agricultural production and water and land resources. Part of climate change is to reduce soil fertility (through erosion processes), increase the frequency of repeated pest attacks, reduce crop yields, and increase groundwater harvest periods by reducing water access. Zinc plays an essential role in the basic processes of plant life, namely cell division, stomata regulation and respiration. Apart from the increase in carbon dioxide emissions, high temperatures are also a major stressor that can lead to severe growth retardation and plant distribution. At higher concentrations, carbon dioxide increased photosynthetic carbon and increased organic matter, which in turn increased stem diameter of lentil plant (Shams, 2017).

### Materials and methods

The composite experiment was performed as a factorial experiment in a completely randomized design with four replications. Irrigation at three levels (60, 80 and 100% of field capacity) as the first factor, foliar application of zinc sulfate fertilizer at two levels (no foliar application and 0.5 gl-1) as the second factor and environmental conditions at four levels (380\_24, 380\_31, 700\_24 and 700\_31 C/PPm (carbon dioxide) were the third factor. The studied traits were number of root nodes, root dry weight, stem height and diameter, number of leaves and grain yield. Data were analyzed using SAS 9.1 software and the mean of the treatments was compared with LSD test at 5% probability level.

### **Results and discussion**

Co-application of carbon dioxide, complete irrigation and complete irrigation and zinc sulfate increased the number of nodes. Increasing the concentration of carbon dioxide under severe drought stress increased root dry weight. Also, increasing the concentration of carbon dioxide under mild environmental stress caused plant height, diameter and grain yield. Increasing the concentration of carbon dioxide in full irrigation conditions increased the number of leaves. Increasing carbon dioxide increases water use, photosynthesis and net primary productivity by reducing stomatal conductance and transpiration, which ultimately increases biomass and yield.

Application of zinc sulfate under full irrigation conditions increased the total grain yield by 17.1 g/plant. Positive role of zinc in chlorophyll synthesis, and performance of optical photosystems can increase growth indices. The use of zinc chelate due to the role of zinc in the activity of plant enzymes and metabolisms, including plant hormones (auxin) has increased chlorophyll activity and photosynthesis, which finally has increased grain yield in the plant.

#### **Conclusi**on

Increasing the concentration of carbon dioxide at lower temperatures and full irrigation and mild stress increased the majority of morphological traits. Also, application of zinc alone and with full irrigation increased some morphological traits and grain yield.

Keywords: Bean, CO<sub>2</sub> Concentration, Drought, Growth indices, Seed yield

| Table 1. Specifications of fertilizer used in this experiment |                                                |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------|--|--|--|--|
| The amount of elements in liquid fertilizer as a percentage   | Decomposition of liquid fertilizer<br>solution |  |  |  |  |
| 4%                                                            | Chelate zinc                                   |  |  |  |  |
| 4%                                                            | Solution zinc                                  |  |  |  |  |
| 1%                                                            | Sulfur                                         |  |  |  |  |

| Table 2. Results of soil texture analysis | Table 2. | Results | of soil | texture | analysis |
|-------------------------------------------|----------|---------|---------|---------|----------|
|-------------------------------------------|----------|---------|---------|---------|----------|

| Soil texture     | S  | EC                 | pН   | SAR | Organic carbon | K  | Р   | Ν     |
|------------------|----|--------------------|------|-----|----------------|----|-----|-------|
| Silt alary loom  | %  | dS m <sup>-1</sup> |      | ppm | %              | pj | pm  | %     |
| Silt, clay, loam | 16 | 0.29               | 7.18 | 19  | 0.31           | 80 | 6.5 | 0.026 |

Table 3. Combined analysis of Zn chelate foliar application on morphological traits and grain yield under temperaturecarbon dioxide and water stress

| Sources of variance | Df | Number<br>of root<br>nodule | Root dry<br>weight | Plant<br>height | Stem<br>diameter | Number of<br>leaf | Grain<br>yield |
|---------------------|----|-----------------------------|--------------------|-----------------|------------------|-------------------|----------------|
| Condition (C)       | 3  | 617.9**                     | 410**              | 292.3**         | 17.5**           | 521.5**           | 45.07**        |
| Rep(Condition)      | 12 | 5.4                         | 1.70               | 6.5             | 0.318            | 6.4               | 0.681          |
| Water stress (WS)   | 2  | 1996.2**                    | 112.7**            | 1849.4**        | $46.9^{**}$      | 2244.1**          | 984.69**       |
| C*WS                | 6  | $17.8^{**}$                 | $4.8^{*}$          | $48^{**}$       | 3.2**            | 75.5**            | 5.48**         |
| Zn                  | 1  | 742.5**                     | 0.259              | 68.3**          | $0.80^{*}$       | 2.3               | 134.42**       |
| C*Zn                | 3  | $16.8^{*}$                  | 5.6*               | 7.7             | 0.34             | 8.6*              | 0.6091         |
| WS*Zn               | 2  | 183.5**                     | 1.06               | 13.5            | 0.01             | 1.9               | 26.71**        |
| C*WS*Zn             | 6  | 3.52                        | 1.65               | 8.58            | 0.33             | 2.20              | 0.3871         |
| Error               | 60 | 4.38                        | 1.79               | 9.31            | 0.16             | 2.57              | 0.42           |
| CV (%)              |    | 10.3                        | 6.9                | 8.7             | 10.5             | 6.2               | 5.37           |

\* and \*\* significant at 0.05and 0.01 probability levels, respectively.

|                                          | Treatmen |                       |                     |                     |                   |                    |                    |
|------------------------------------------|----------|-----------------------|---------------------|---------------------|-------------------|--------------------|--------------------|
| Conditions<br>(CO <sub>2</sub> /Temperat |          | Number of root nodule | Root dry<br>weight  | Plant<br>height     | Stem<br>diameter  | Number of<br>leaf  | Grain<br>yield     |
|                                          |          | pre plant             | g/Plant             |                     | cm                | pre plant          | g/plant            |
|                                          | 100%FC   | 23.3 <sup>d</sup>     | 13.1 <sup>g</sup>   | 42.1ª               | 3.5°              | 26.2°              | 14.8 <sup>b</sup>  |
| 380_24                                   | 80%FC    | 22.5 <sup>d</sup>     | 12.8 <sup>g</sup>   | 42.2 <sup>a</sup>   | 3.3°              | 24.6 <sup>d</sup>  | 13.5 <sup>cd</sup> |
|                                          | 60%FC    | 9.7 <sup>g</sup>      | $15.4^{\mathrm{f}}$ | $24.5^{\mathrm{f}}$ | 2.3 <sup>d</sup>  | 15 <sup>f</sup>    | 5.6 <sup>f</sup>   |
|                                          | 100%FC   | 18 <sup>e</sup>       | 17.5 <sup>e</sup>   | 31.4 <sup>d</sup>   | 3.4°              | 24.7 <sup>cd</sup> | 13.9°              |
| 380_31                                   | 80%FC    | 17.1 <sup>e</sup>     | 17 <sup>e</sup>     | 34.5°               | 3.5°              | 24.7 <sup>cd</sup> | 12.9 <sup>d</sup>  |
|                                          | 60%FC    | 6.8 <sup>h</sup>      | 22 <sup>bc</sup>    | $24.7^{f}$          | 2.3 <sup>d</sup>  | 15 <sup>f</sup>    | 4.8 <sup>g</sup>   |
|                                          | 100%FC   | 28.8 <sup>bc</sup>    | 20.3 <sup>d</sup>   | 43.4 <sup>a</sup>   | 5.3 <sup>b</sup>  | 37.2 <sup>a</sup>  | 16.7ª              |
| 700_24                                   | 80%FC    | 27.5°                 | 20.2 <sup>d</sup>   | 43.5 <sup>a</sup>   | 5.8 <sup>a</sup>  | 36.3 <sup>ab</sup> | 16.7 <sup>a</sup>  |
|                                          | 60%FC    | 14.3 <sup>f</sup>     | 22.6 <sup>bc</sup>  | 28.5 <sup>de</sup>  | 2.4 <sup>d</sup>  | 16.3 <sup>f</sup>  | 6.8e               |
|                                          | 100%FC   | 31.1ª                 | 21.6°               | 38.3 <sup>b</sup>   | 5.4 <sup>b</sup>  | 35 <sup>b</sup>    | 16.7ª              |
| 700_31                                   | 80%FC    | 30.5 <sup>ab</sup>    | 23 <sup>b</sup>     | 38.9 <sup>b</sup>   | 5.7 <sup>ab</sup> | 35.7 <sup>ab</sup> | 16.78ª             |
|                                          | 60%FC    | 13.8 <sup>f</sup>     | 25.8ª               | 26.8e <sup>f</sup>  | 2.6 <sup>d</sup>  | 18 <sup>e</sup>    | 5.5 <sup>f</sup>   |

 Table 4. Mean comparison of interaction of temperature-carbon dioxide conditions and water stress on morphological

 traits and bean grain yield

Means followed by the same letter(s) were not significantly different according to LSD (p<0.05) test

| Table 5. Mean comparison of interaction of temperature-carbon dioxide and zinc sulfate con- | ditions |
|---------------------------------------------------------------------------------------------|---------|
| on a number of nodes and root dry weight                                                    |         |

| Treatmen                       |                   |                    |                                        |                     |
|--------------------------------|-------------------|--------------------|----------------------------------------|---------------------|
| Conditions                     |                   | Number of root     |                                        | Number of           |
| (CO <sub>2</sub> /Temperature) | Zn                | nodule             | Root dry weight                        | leaf                |
|                                | g l <sup>-1</sup> | pre plant          | g/Plant                                | pre plant           |
| 290. 24                        | 0                 | 16.66 <sup>d</sup> | 13.71 <sup>e</sup>                     | 21.66 <sup>c</sup>  |
| 380_24                         | 0.5               | 20.41°             | 13.89 <sup>e</sup>                     | 22.25°              |
| 200 21                         | 0                 | 11 <sup>e</sup>    | 19.44 <sup>cd</sup> 21.25 <sup>c</sup> | 21.25°              |
| 380_31                         | 0.5               | 17 <sup>d</sup>    | 18.35 <sup>d</sup>                     | 21.75 <sup>c</sup>  |
| 700 24                         | 0                 | 21.16°             | 20.42°                                 | 30.1ª               |
| /00_24                         | 0.5               | 26 <sup>b</sup>    | 21.71 <sup>b</sup>                     | 29.83 <sup>ab</sup> |
| 700 21                         | 0                 | 21.33°             | 23.49 <sup>a</sup>                     | 30.58 <sup>a</sup>  |
| 700_31                         | 0.5               | 29 <sup>a</sup>    | 23.53ª                                 | 28.58 <sup>b</sup>  |

Means followed by the same letter(s) were not significantly different according to LSD (p<0.05) test

| Table 6. Mean comparison of interaction of irrigation stress and zinc chelat | e on the number of |
|------------------------------------------------------------------------------|--------------------|
| root nodules and bean yield                                                  |                    |

| Treatmen     | Treatmen          |                          |                   |  |
|--------------|-------------------|--------------------------|-------------------|--|
| Water stress | Zn                | Number of root<br>nodule | grain yield       |  |
|              | g l <sup>-1</sup> | pre plant                | g/plant           |  |
| 1000/ 5      | 0                 | 21.4 <sup>b</sup>        | 13.9 <sup>b</sup> |  |
| 100%Fc       | 0.5               | 29.2ª                    | 17.1ª             |  |
| 000/5        | 0                 | 20 <sup>b</sup>          | 13.1°             |  |
| 80%Fc        | 0.5               | 28.8 <sup>a</sup>        | 16.8 <sup>a</sup> |  |
| (00/ 5       | 0                 | 11.1°                    | 5.5 <sup>d</sup>  |  |
| 60%Fc        | 0.5               | 11.2°                    | 5.8 <sup>d</sup>  |  |

Means followed by the same letter(s) were not significantly different according to LSD (p<0.05) test

| Treatmen          | _                  |                   |
|-------------------|--------------------|-------------------|
| Zn                | Plant height       | Stem<br>diameter  |
| g l <sup>-1</sup> | cm                 |                   |
| 0                 | 34.08 <sup>b</sup> | 3.74 <sup>b</sup> |
| 0.5               | 35.77 <sup>a</sup> | 3.92 <sup>a</sup> |

 Table 7. Mean comparison of the effect Zn sulfate on plant height and diameter

Means followed by the same letter(s) were not significantly different according to LSD (p<0.05) test.