

Original article

Environmental Stresses In Crop Sciences Env. Stresses Crop Sci. Vol. 15, No. 2, pp. 443-458 (Summer 2022)

http://dx.doi.org/110.22077/escs.2020.3783.1913

Evolution of ability of remediation heavy metal Cadmium by some of plant species and biochar in drought stress conditions

F. Kohansal Vajargah¹, F. Paknejad^{2*}, M. Mazhari³, A. Khanmirzaei Fard³, D. Habibi⁴

1.Ph.D student, Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran

2. Professor, Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran

3. Assistant Professor, Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran

4. Associate Professor, Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, Iran

Received 5 October 2020; Accepted 3 December 2020

Extended abstract

Introduction

Environmental stresses such as drought, temperature, heavy metals and salinity greatly reduce plant growth and development, among non-biological stresses, drought stress is one of the environmental factors which limits crop production and reduces average yield by 50% or more (Wang et al.,2 003). Heavy metals are another environmental stress that in recent years as it has become one of the biggest problems of the agricultural sector. Due to technical and economic limitations of heavy metal removal methods, the search for new methods has received a great deal of attention and in this regard biological absorption as a new method has received special attention(Maleki and Zarasvand, 2008).

Materials and methods

In order to Evolution Ability of Remediation Heavy Metal Cadmium by Some of Plant Species and Biochar in drought stress conditions experimental in years 2017-2018 was carried out for two years in the research farm of the Faculty of Agriculture, Islamic Azad University, Karaj Branch. The experiment was factorial in a completely randomized design with 3 replications. Experimental factors included cadmium chloride salt at four levels (control, 10 mg.kg⁻¹, 20 mg.kg⁻¹, 30 mg.kg⁻¹), Biochar at three levels (control, biochar at the time of first year planting, biochar after first year harvest and at the time of second year planting), 3 crop species (clover, alfalfa, canola) and drought stress (control, 40% available moisture discharge based on gypsum block, 60% available moisture discharge based on gypsum block, 60% available moisture discharge based on gypsum block, 60% available moisture discharge based on gypsum block, and to the soil of the desired pots. After cultivating crops and sufficient vegetative growth shoot and root specimens were carefully removed from the soil of the pots and after washing and drying according to the protocol in this experiment extracts were taken for reading in an atomic absorption apparatus. For analyze the measured data, Mean and Bartlett comparison were performed using MSTATC, SAS and Excel software.

Results and discussion

The results of analysis of variance showed that Triple interactions of cadmium, crop species, drought stress for all studied traits(Dry weight of shoots, dry weight of roots, amount of cadmium in shoots, amount of cadmium in roots, measurement of metal element, accumulation coefficient, extraction coefficient) It became significant with a one percent error probability. The results also showed that the triple interactions of cadmium, crop species, biochar only for traits Translocation factor, Accumulation

factor, Enrichment cofficient became significant with a probability level of one percent. And for other traits, this triple interaction was not significant. The results of mean comparison showed that the highest mean amount of cadmium in the shoot(2.68 mg.kg⁻¹) And roots(1.78 mg.kg⁻¹) Related to canola treatment at the level of 30 ppm cadmium And under drought stress conditions, 60% of available moisture discharge was based on gypsum block. Most average Translocation factor related to the triple interactions of cadmium, crop species, biochar related to treatment Canola cadmium at the level of 20 ppm and biochar at the time of crop cultivation in the first year(a3b3c2) with average (3.73) and the lowest was related to cadmium control treatments (a1b1c1) with mean (0.1). The most common triple interactions of cadmium, crop species, drought stress are also related treatment of cadmium Canola at 20 ppm level without drought stress (a3b3d1) (3.98) and the lowest mean was related to cadmium control treatment (a1b1d1) with mean (0.1). Most average Accumulation factor corresponding to the triple interactions of cadmium, crop species, biochar related to the treatment of cadmium Canola at the level of 30 ppm and biochar at the time of crop cultivation in the first year(a4b3c2) with average (70.137) and the lowest was related to cadmium control treatments (alb1c1) with mean (0.0044). Most of the triple interactions of cadmium, crop species, drought stress also related to cadmium Canola treatment at 20 ppm level without drought stress (a3b3d1) (148.87) and the lowest mean was related to cadmium control treatment (a1b1d1) with mean (0.0043). The highest mean of triple interactions of cadmium, crop species, biochar for Enrichment cofficient related to the treatment of cadmium Canola at the level of 30 ppm and without biochar in the first year (a4b3c1) with a mean (0.182) and the lowest was related to cadmium control treatments (a1b1c1) with mean (0.0117).

Conclusions

Most of the triple interactions of cadmium, crop species, drought stress are also related Treatment of cadmium Canola at 30 ppm level and drought stress 60% available moisture discharge based on gypsum block (a4b3d3) (0.180) the lowest mean was related to cadmium control treatment (a1b1d1) with mean (0.0011). The results of this study showed that Canola had a higher uptake and transport of cadmium metal than clover and alfalfa.

Keywords: Biochar, Cadmium, Crop rotation, Drought stress

Sample	(SP)	EC	pН	calcium carbonate	organic matter	\mathbf{N}^{*}	K	Р	Sand	silt	clay	Texture
	%	ds m ⁻¹		%		Kg.ha ⁻¹	pp	m		%		
Soil	50.31	4.1	7.58	19.49	4.61	199.82	600	32	28	44	28	C.L
Optimal range	>40	<1.5	8-6		>0.2		220-200	20-15				

* Estimation of nitrogen released during the growing season

Table 2. biochar features used in this experiment

	iodine		amount of		Percentage		
Specifications	number	Area	humidity	pН	of ash	Grading	Foundation
	mg.g ⁻¹	m ² g ⁻¹	%		%	μ	Cellulose materials from
Biochar	160-180	170	3-4	8	4-5	180	the woods of Mazandaran forest

Table 3.	Analysis of	variance	traits	studied i	n clover,	alfalfa,	canola
-						The	

		Dry weight		The amount of	The amount			
Source of variations	DF	of shoot	Dry weight of root	cadmium in shoot	of cadmium in root	Translocatio n factor	Accumulation factor	Enrichment coefficient
Year (Y)	1	0.064 ^{ns}	0.019 ^{ns}	0.239**	0.000001^{ns}	0.982**	6374**	0.061**
Rep*year	4	6138.73**	265.154**	0.419**	0.517 **	0.982**	1391 **	0.002**
Cadmium (C)	3	6492.81**	482.163**	38.886**	25.154**	75.794**	98169**	0.085**
$\mathbf{C} \times \mathbf{Y}$	3	0.008 ns	0.00006^{ns}	0.040^{**}	0.000001^{ns}	0.137**	977 **	0.023**
Crop species (S)	2	37829.52**	5064.73**	98.485**	17.835**	100.345**	36858**	0.620**
S * Y	2	0.006 ^{ns}	0.00021^{ns}	0.102**	0.000001^{ns}	0.160**	3668.**	0.041**
Biochar (B)	2	5191.341**	62.436**	0.370 **	0.408 **	0.147**	328**	0.002^{**}
B *Y	2	0.061 ns	0.0193 ^{ns}	0.0003^{ns}	0.000001^{ns}	0.0002^{ns}	3.110 ^{ns}	0.0001 ^{ns}
Drought stress (D)	2	2306.675**	34.308**	0.250 **	0.259 **	0.083**	534.**	0.001^{**}
D * Y	2	0.00063 ns	0.00001^{ns}	0.0002^{ns}	0.000001^{ns}	0.0001 ^{ns}	5.2 ^{ns}	0.00003^{ns}
S * C	6	163.115**	7.346**	17.957 **	6.051 **	27.472**	59681 **	0.086^{**}
Y * C * S	6	0.00578^{ns}	0.0001^{ns}	0.018^{*}	0.0000001 ^{ns}	⁵ 0.0439 ^{**}	594**	0.019**
C * B	6	2.513 ^{ns}	0.165 ^{ns}	0.112 **	0.088 **	0.187**	215**	0.0006**
Y * C * B	6	0.009 ^{ns}	0.00006^{ns}	0.0001**	0.000001^{ns}	0.0003 ^{ns}	2 ^{ns}	0.0001**
C * D	6	26.182**	10.264**	0.059**	0.058 **	0.081**	164**	0.0002**
Y* C *D	6	0.0003^{ns}	0.00001^{ns}	0.00006^{ns}	0.0000001 ^{ns}	s 0.0001 ^{na}	1.6 ^{ns}	0.00004^{ns}
S * B	4	169.703**	0.699 ^{ns}	0.124 **	0.008 ^{ns}	0.0002^{ns}	232**	0.0014**
Y * S * B	4	0.006 ^{ns}	0.0002^{ns}	0.0001^{ns}	0.000001^{ns}	0.000004^{ns}	2.2 ^{ns}	0.0002**
S * D	4	117.021**	1.9431**	0.018^{*}	0.022**	0.276**	809**	0.0001^{*}
Y * S * D	4	0.00012^{ns}	0.00004^{ns}	0.00001^{ns}	0.00000001 ^{ns}	s 0.0004 ^{ns}	8.01 ns	0.00002^{ns}
B* D	4	7.632 ^{ns}	0.28994^{ns}	0.008 ^{ns}	0.005 ns	0.0007^{ns}	2.28 ^{ns}	0.00003^{ns}
B * D	4	0.0004^{ns}	0.00001^{ns}	0.000009^{ns}	0.000001^{ns}	0.000001^{ns}	0.02 ^{ns}	0.00004^{ns}
C * S * B	12	5.868 ^{ns}	0.417 ^{ns}	0.068 **	0.008 ^{ns}	0.076**	167**	0.0004**
Y * C * S * B	12	0.005^{ns}	0.0001^{ns}	0.00007^{ns}	0.000001^{ns}	0.0001 ^{ns}	1.6 ^{ns}	0.0001**
C * S * D	12	24.903**	3.21455**	0.015*	0.012*	0.102**	207**	0.0001**
Y * C * S * D	12	0.00024^{ns}	0.00004^{ns}	0.00001^{ns}	0.000001^{ns}	0.0001 ^{ns}	2.06 ^{ns}	0.00005^{ns}
S * B * D	8	4.863 ^{ns}	0.456 ^{ns}	0.004 ns	0.003 ^{ns}	0.005 ^{ns}	4.45 ^{ns}	0.00002^{ns}
Y * S * B * D	8	0.0002^{ns}	0.00004^{ns}	0.000004^{ns}	0.000001^{ns}	0.000008^{ns}	0.04 ^{ns}	0.00004^{ns}
C * S * B * D	36	1.65046 ^{ns}	0.09230 ^{ns}	0.003 ^{ns}	0.003 ^{ns}	0.0048 ^{ns}	3.39 ^{ns}	0.00003^{ns}
Y * C * S * B * D	36	0.0002^{ns}	0.00003^{ns}	0.000003^{ns}	0.000001^{ns}	0.000007^{ns}	0.03 ^{ns}	0.00002^{ns}
Error	428	4.398	0.46488	0.0072	0.0058	0.009	28.4	0.00004
CV%		4.39	6.87	14.26	17.47	9.71	16.98	10.10

**: Significant in p<0.01, *: Significant in p<0.05, ns: Non-Significant

	Crop species	cadmium, crop species, and drougl Drought stress	Dry weight of shoot	Dry weight of root	cadmium in shoot	cadmium i root
		_	g		mg/	-
		control	47.89666 ⁱ	6.215 ⁱ	0.0001 ^z	0.001 ^z
	Clover	40% evaporation	47.1383 ⁱ	6.23 ⁱ	0.0001 ^z	0.001 ^z
		60% evaporation	43.0383 ^k	6.286 ⁱ	0.0001 ^z	0.001 ^z
		control	49.3766 ⁱ	14.9616 °	0.0001 ^z	0.001 ^z
control	Alfalfa	40% evaporation	47.1833 ⁱ	15.0633 ^b	0.0001 ^z	0.001 ^z
		60% evaporation	43.0666 ^k	15.4783 ª	$0.0001 \ ^{z}$	$0.001 \ ^{z}$
		control	75.1183 a	14.4533 °	$0.0001 \ ^{z}$	$0.001 \ ^{z}$
	Canola	40% evaporation	73.3833 ^b	14.6416 °	0.0001 ^z	$0.001 \ ^{z}$
		60% evaporation	69.975 ^d	15.105 ^b	0.0001 ^z	0.001 ^z
		control	43.895 ^k	5.21 ^j	0.1446 ^y	0.19 ^y
	Clover	40% evaporation	42.495 ^k	4.705 ^k	0.155 ^x	0.2 ^x
		60% evaporation	39.8716 ¹	4.1716 ^k	0.1825 v	0.2266 ^u
		control	45.8083 ^j	13.811 ^d	0.155 ^x	0.2 ^x
10 ppm	Alfalfa	40% evaporation	42.905 ^k	13.968 ^d	0.1722 ^w	0.2166
		60% evaporation	40.535 ¹	14.4066 °	0.1928 ^u	0.2366
		control	70.0816 °	13.46 ^d	$0.8438^{\ i}$	0.2133 v
	Canola	40% evaporation	67.4083 ^d	13.0066 ^d	0.868 ^h	0.2366
		60% evaporation	62.8716 ^e	11.6116 ^f	0.8955 ^g	0.2633
		control	38.56 ^m	3.84 ¹	0.279 ^t	0.3866 1
	Clover	40% evaporation	36.4933 ⁿ	3.505 ¹	0.2962 ^r	0.4033 F
		60% evaporation	33.8733 ^p	3.1383 ¹	0.3478 ⁿ	0.4533 4
		control	39.8083 ¹	12.64 ^e	0.2824 ^s	0.393 q
20 ppm	Alfalfa	40% evaporation	36.9083 ^m	12.1066 ^e	0.2996 q	0.41 ⁿ
		60% evaporation	34.5416°	10.74 ^g	0.3513 ^m	0.46 ^j
		control	63.14 °	12.44 ^e	2.0804 f	1.17 ^f
	Canola	40% evaporation	56.94 ^f	11.806 ^f	2.108 °	1.2 °
		60% evaporation	50.9066 ⁱ	10.7733 ^g	2.156 d	1.2733
		control	36.565 ⁿ	3.2383 ¹	0.2996 ^q	0.4066
	Clover	40% evaporation	34.4883°	2.9183 ^m	0.341 °	0.4466 ^I
		60% evaporation	31.205 ^q	2.505 ⁿ	0.3857 ^k	0.49 ^h
		control	37.8066 ^m	11.64 ^f	0.31 ^p	0.4166 ⁿ
30 ppm	Alfalfa	40% evaporation	34.906°	10.9066 ^g	0.3547 ¹	0.4666 ⁱ
		60% evaporation	32.8733 ^p	9.94 ^h	0.4064 ^j	0.52 ^g
		control	61.87166 ^e	11.4383 ^f	2.4111 °	1.52 °
	Canola	40% evaporation	54.9383^{f}	10.805 ^g	2.4627 ^b	1.57 ^b
		60% evaporation	48.905 ⁱ	9.705 ^h	2.6866 ª	1.7866 *

Table 4. Interaction of cadmium,	cron snecies	and drought stress	traits studied in clove	r alfalfa and canola
I abic 4. Interaction of caulifulity	crup species	, and urbugnt stress	thants studicu in clove	i, anana, anu canoia

Cadmium	Crop species	Drought stress	Translocation factor	Accumulation factor(mg/kg)	Enrichment cofficient
		control	0.1 ^s	0.0047 ^p	0.1 °
	Clover	40% evaporation	0.1 ^s	0.0047 ^p	0.1 ^e
		60% evaporation	0.1 ^s	0.0043 ^p	0.1 ^e
		control	0.1 ^s	0.00495 ^p	0.1 ^e
control	trol Alfalfa	40% evaporation	0.1 ^s	0.00471 ^p	0.1 ^e
		60% evaporation	0.1 ^s	0.00430 ^p	0.1 ^e
		control	0.1 ^s	0.00752 ^p	0.1 ^e
		40% evaporation	0.1 ^s	0.00736 ^p	0.1 ^e
		60% evaporation	0.1 ^s	0.00701 ^p	0.1 ^e
		control	0.7659 ^p	6.3253 °	0.0146 ^{k-n}
	Clover	40% evaporation	0.7798 ⁿ	6.5587 °	0.0157 ^{i-m}
		60% evaporation	0.8102 ^k	7.2287 ^{no}	0.0185 ^{h-k}
	10 ppm Alfalfa	control	0.7798 ⁿ	7.0715 ^{no}	0.0166 ^{h-n}
10 ppm		40% evaporation	0.7993 1	7.3385 ^{no}	0.0185 ^{h-k}
	60% evaporation	0.8201 ^j	7.7795 ^{no}	0.02084 ^{g-i}	
		control	3.9851 ª	59.0273 ^g	$0.0920 {\rm ~f}$
Canola	40% evaporation	3.7010 ^b	58.3685 ^g	0.0989 ^e	
	60% evaporation	3.4344 °	56.15797 ^h	0.1029 ^e	
	Canola 4 Canola 4 6 Clover 4 6 cu	control	0.7342 ^r	10.7547 ^m	0.0173 ^{h-m}
		40% evaporation	0.7470 ^q	10.7793 ^m	$0.0179 \ ^{h-l}$
		60% evaporation	0.77930 ⁿ	11.74877 ^{j-1}	0.0210 ^{gh}
		control	0.7343 ^r	11.24565 ^{k-m}	0.0201 ^{g-j}
20 ppm	Alfalfa	40% evaporation	0.7470 ^q	11.04024 lm	0.0212 ^{gh}
		60% evaporation	0.7785 ⁿ	12.1267 ^{jk}	0.0253 ^g
		control	1.8091 ^d	131.6990 °	0.1567 ^d
	Canola	40% evaporation	1.786 ^e	120.3052 °	0.1540 ^d
		60% evaporation	1.71784 ^f	109.9427 f	0.1576 ^{cd}
		control	0.74920 ^q	10.9547 ^{lm}	0.0116 ⁿ
	Clover	40% evaporation	0.77576 ⁿ	11.6999 ^{j-m}	0.0132 ^{l-n}
		60% evaporation	0.7992 1	11.9115 ^{j-1}	0.0150 ^{j-n}
		control	0.7561 ^q	11.70631 ^{j-m}	0.0127 mn
30 ppm	Alfalfa	40% evaporation	0.7691o ^{op}	12.3311 ^{ij}	0.0147 ^{k-n}
		60% evaporation	0.78943 ^m	13.3125 ⁱ	0.01690 ^{h-m}
		control	1.5981 ^g	148.8723 ª	0.16445 ^b
Canol	Canola	40% evaporation	1.5804 ^h	134.8604 ^b	0.1621 bc
		60% evaporation	1.51173 ⁱ	130.2834 ^d	0.1805 a

			The	The			
	Dry	Dry	amount of	amount of			
	weight of	weight of	cadmium	cadmium	Translocation	Accumulation	Enrichment
Biochar treatments	shoot	root	in shoot	in root	factor	factor	cofficient
	{	g	mg	/kg		mg/kg	
Control	44.84 ^b	9.59 ^b	0.6203ª	0.4630ª	0.983 ^b	30.71 ^b	0.070^{ab}
Biochar at the time of cultivation of the first year	53.34ª	10.53 ^a	0.5485 ^b	0.3877 ^b	1.028ª	32.85ª	0.065 ^b
Biochar after the first year harvest and at the time of the second year cultivation	44.87 ^b	9.61 ^b	0.6203ª	0.4630ª	0.983 ^b	30.72 ^b	0.0713ª

Table 5. The main effects of	biochar on the studied	traits in clover, alfalfa and canola	l

In each column, the means with at least one common letter based on Duncan's test at the level of 5% probability have no significant difference.

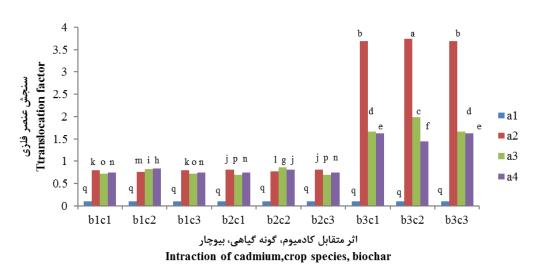


Fig. 1. Triple interactions of cadmium chloride salt [control (a1), 10 (a2; 10 mg.kg⁻¹), (a3; 20 mg.kg⁻¹), (a4; 30 mg.kg⁻¹)], biochar [control (c1), Biochar at the time of cultivation of the first year (c2), biochar after the harvest of the first year and at the time of cultivation of the second year (c3)], crop species [clover (b1), alfalfa (b2), rapeseed (b3)]on Translocation factor

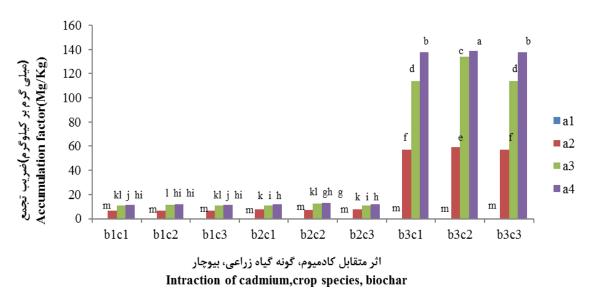
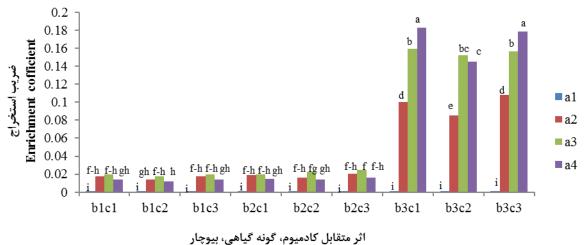



Fig. 2. Triple interactions of cadmium chloride salt [control (a1), 10 (a2; 10 mg.kg⁻¹), (a3; 20 mg.kg⁻¹), (a4; 30 mg.kg⁻¹)], biochar [control (c1), Biochar at the time of cultivation of the first year (c2), biochar after the harvest of the first year and at the time of cultivation of the second year (c3)], crop species [clover (b1), alfalfa (b2), rapeseed (b3)]on Accumulation factor

Intraction of cadmium, crop species, biochar

Fig. 3. Triple interactions of cadmium chloride salt [control (a1), 10 (a2; 10 mg.kg⁻¹), (a3; 20 mg.kg⁻¹), (a4; 30 mg.kg⁻¹)], biochar [control (c1), Biochar at the time of cultivation of the first year (c2), biochar after the harvest of the first year and at the time of cultivation of the second year (c3)], crop species [clover (b1), alfalfa (b2), rapeseed (b3)]on Enrichment coefficient

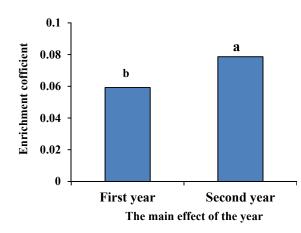


Fig. 4. Effects of year on on Enrichment coefficient