

Original article

Environmental Stresses In Crop Sciences Env. Stresses Crop Sci. Vol. 15, No. 2, pp. 375-392 (Summer 2022)

http://dx.doi.org/10.22077/escs.2021.3740.1908

Survey of Azotobacter inoculation and cessation of irrigation on yield and some physiological characteristics of rapeseed cultivars

M.Gholami¹, S. A. Siadat^{2*}, A. Koochakzadeh³, M. R. Moraditelavat³, M. Rafiei⁴

- 1. Ph.D. Student, Department of Plant Genetic and Production Engineering, Faculty of Agriculture, Khuzestan Agricultural and Natural Resources Sciences University, Ahvaz, Iran
- 2. Professor, Department of Plant Genetic and Production Engineering, Faculty of Agriculture, Khuzestan Agricultural and Natural Resources Sciences University, Ahvaz, Iran
- 3. Associate Professor, Department of Plant Genetic and Production Engineering, Faculty of Agriculture, Khuzestan Agricultural and Natural Resources Sciences University, Ahvaz, Iran
- 4. Research Assistant Professor, Lorestan Agricultural and Natural Resources Research and Education Center, Khorramabad, Iran, Iran

Received 28 September 2020; Accepted 9 October 2021

Extended abstract

Introduction

Canola is one of the main oilseed crops. The effect of *Azotobacter chroococcum* as one of the biological fertilizer on the quantity and quality of rapeseed can be investigated. The presence of azotobacter in soils has positive effects on plants. Adequate moisture can promote vegetative growth, improve root growth, increase leaf area and durability, prolong flowering period, shoots, number of flowers and grain per pod, seed weight and yield. Moisture stress reduces the quantity and quality of these traits in rapeseed. The aim of this study was to find the right strain, suitable cultivar and appropriate irrigation regime for end of canola season water stress to save water in Lorestan province.

Material and methods

In order to evaluate the amount of protein, proline, soluble sugars and photosynthetic antioxidant enzymes, chlorophyll and carotenoids of rapeseed cultivars under the influence of inoculation of *Azotobacter chrooccocum* in cut off irrigation conditions, an experiment was conducted in the year 2016-2017 at Sarab Chengai Agricultural Research Station, Khorramabad as a factorial split plot with randomized complete block design with 4 replications. Experimental factors included discontinuation of irrigation at 30% flowering and 30% pod forming stages and optimum irrigation (control), *Azotobacter chrooccocum* included 63, 70 strains and non-inoculated (control) and three rapeseed genotypes including Neptune, Octane and Okapi (control).

Results and discussion

Results showed that the effect of irrigation interruption on grain yield, proline content, soluble sugars, proteins, antioxidant enzymes and photosynthetic pigments of green tissue was significant. The effect of azotobacter chroococcum strains on all of these traits except grain yield and proline was significant. Rapeseed cultivars differed significantly in terms of seed yield, soluble sugars, enzyme catalase and chlorophyll b, and total chlorophyll a + b. in terms of the accumulation of proline, protein, peroxidase enzyme, carotenoid, chlorophyll a And the chlorophyll a/b ratio was not significantly Different between cultivars. The highest levels of proline, soluble sugars, antioxidant enzymes were obtained in the irrigation cessation treatment from the 30% flowering stage and the highest amount of protein and

photosynthetic pigments were obtained from the normal irrigation treatment. Inoculation of rapeseed with *Azotobacter chrooccocum* strains increased the protein, total chlorophyll and carotenoid of the compared to the non-inoculated treatment. Octane and Neptune hybrids outperformed the total chlorophyll a+b of aerial organisms in terms of the enzyme catalase. However, the Okapi (control) cultivar was superior to octane and Neptune hybrids in terms of soluble sugars. The highest grain yield (4559 kg.ha⁻¹) was observed in the optimal irrigation (control). In the irrigation cut-off 30% of silique and 30% flowering stages, decreased grain yield (5.99% and 23.65%, respectively) compared to optimal irrigation. Seed yield of Octane and Neptune cultivars were 4584 and 4290 kg ha⁻¹, respectively, which were 24.7% and 19.6% more than Okapi (control) cultivars, respectively.

According to the results, Interaction Effects showed that rapeseed cultivars produced the highest protein content in the treatment of normal irrigation and inoculation with 63 and 70 Aztobacter chroococcum strains. The lowest green organ protein was obtained from treatments of non-inoculated and irrigation discontinuation from 30% flowering and 30% pod forming stages. Irrigation interruptions led to a significant increase in proline concentration in canola. In irrigation cessation treatment, 30% flowering and normal irrigation were observed with the lowest and highest proline concentrations, respectively. Probably related to its role in regulating osmosis to stabilize cellular membranes and proteins, inhibiting free radicals under stress. Irrigation witholding at 30% flowering and 30% pod forming resulted in a significant increase in antioxidant peroxidase and catalase enzymes activities. Azotobacter chrooccocum strains significantly reduced the levels of peroxidase and catalase enzymes in the rapeseed aerial parts. It is possible that by inoculating the Azotobacter chrooccocum, the plant is less likely to show signs of stress. Irrigation discontinuation significantly reduced chlorophyll a, b, and total levels compared to normal irrigation, possibly due to increased chlorophylase enzyme activity. The interactions between irrigation interruptions, azotobacter inoculation and rapeseed cultivars on the amount of chlorophyll a showed that Neptune and Octane hybrids produced the highest amount of chlorophyll a in the treatment with 70 strain in normal irrigation treatment. The same effects on chlorophyll b levels showed that the highest chlorophyll b levels were observed in octane and Neptune hybrids at 63 and 70 strains in normal irrigation and the lowest chlorophyll b content was observed in octane-free treatment without inoculation with irrigation cessation treatment from 30% flowering stage. Octane hybrid produced the highest total chlorophyll a + b in normal irrigation and bacterial inoculation of the strain 70. The highest accumulation of carotenoids was 0.430 mg g⁻¹FW in octane hybrid in strain 63 and normal irrigation. The lowest accumulation of carotenoids in was obtained from the untreated bacterium. The concentration of soluble sugars in the cultivars varied. The highest soluble sugars in the Okapi cultivar weighed 56.341 mg g⁻¹ FW and produced less sugar Neptune with 54.89 and octane with 51.960 mg g⁻¹ FW. Therefore, it seems that the accumulation rate of these osmotic regulators is related to higher drought resistance of cultivars.

Keywords: Antioxidant Enzymes, Carotenoid, Chlorophyll, Proline, Soluble sugars

S.O.V				unstructured soluble			
5.0.1	df	grain yeild	proline	sugars	protein	peroxidase	catalase
Block	3	2983472 **	0.002 ns	20.68 ns	0.0015 ^{ns}	0.0006 ns	0.0267 **
Irrigation	2	11318330**	0.05 **	2118.8 **	0.105 **	0.35 **	0.061 **
Block × Irrigation	6	878382^{*}	0.002 ns	39.27 ^{ns}	0.0027 **	0.0018 ^{ns}	0.00044^{ns}
Bacteria	2	725732 ^{ns}	0.001 ns	335.6 **	0.0627 **	0.137 **	0.024 **
Variety	2	12428648**	0.0002 ns	172.75 **	0.00025 ns	0.0001 ns	0.0083 **
Bacteria × Irrigation	4	187984 ^{ns}	0.025 **	314.9 **	0.0052 **	0.031 **	0.0059 **
Variety × Irrigation	4	950570^{*}	0.0003 ns	85.13 **	0.00084 ^{ns}	0.0036 ns	0.0019 **
Bacteria × Variety	4	109719 ^{ns}	0.00072 ns	12.77 ^{ns}	0.00024 ^{ns}	0.0017 ^{ns}	$0.0007 \ ^{ns}$
Bacteria × Variety × Irrigation	8	198607 ^{ns}	0.00069 ns	9.37 ^{ns}	$0.00017 \ ^{ns}$	0.0025 ns	0.00036 ns
Error	72	368857	0.001	22.35	0.00088	0.002	0.00029
CV(%)		14.78	9.46	8.72	7.25	7.8	3.48

Table 1. Analysis of variances of the effect of azotobacter inocullum on yeild, proline, unstructured soluble sugars, protein, catalase and peroxidase antioxidant enzymes photosynthetic pigments content of canola (*Brassica napus* L.) cultivars in terminal cessation of irrigation condition.

Table 1. Continued

S.O.V			Phote	osynthesis pigmer	nts content	
5.0.V					Total	
	df	Carotenoid	Chlorophyll a	Chlorophyll b	Chlorophyll	Chlorophyll ^a Ratio
Block	3	0.0001 ns	0.0076 *	0.00021 ns	0.0091 *	0.140 ^{ns}
Irrigation	2	0.056 **	1.43 **	0.085 **	2.2 **	1.93 **
Block × Irrigation	6	0.00039 ns	0.0013 ^{ns}	0.001 **	0.0013 ^{ns}	0.179 ^{ns}
Bacteria	2	0.011 **	0.316 **	0.001 *	0.339 **	5.62 **
Variety	2	0.0016 ^{ns}	0.004 ^{ns}	0.0021 **	0.012 **	0.138 ^{ns}
Bacteria × Irrigation	4	0.0033 **	0.243 **	0.0021 **	0.279 **	3.75 **
Variety × Irrigation	4	0.0027 **	0.0092 **	0.0021 **	0.014 **	0.44 **
Bacteria × Variety	4	0.00015 ^{ns}	0.00098 ^{ns}	0.0021 **	0.0015 ^{ns}	0.50 **
Bacteria × Variety × Irrigation	8	0.0016 *	0.014 **	0.0017 **	0.024 **	0.171 ^{ns}
Error	72	0.00036	0.0024	0.00026	0.0025	0.096
CV(%)		5.36	7.18	6.8	5.44	10.85

ns,*and**:non-significant, significant in 0.05 and 0.01 level, respectively

Table 2. Meanes comparison of the irrigation and cultivar interaction effects on grain yield, proline, unstructured soluble sugars, protein, catalase and peroxidase antioxidant enzymes photosynthetic pigments content of rapeseed (*Brassica napus* L.)cultivars in terminal cessation of irrigation condition under effect of azotobacter inocullum

Trea	tment	Grain yeild	Proline	Unstructured soluble sugars	Protein	Peroxidase	Catalase
		kg.ha ⁻¹	mg.g ⁻¹ FW	mg.g ⁻¹ FW	mg.g ⁻¹ FW	nmol.min.g ⁻¹	nmol.min.g ⁻¹
I1	v1	3430.8 dc	0.429 ª	65.96 ª	0.381 ^b	0.654 ª	0.535 ª
11	v2	3925.5 ^{bc}	0.417 ^{ab}	59.26 ^{ab}	0.364 ^b	0.661 ^a	0.530 ^a
	v3	3086.3 ^d	0.422 ^{ab}	62.43 ^{ab}	0.378 ^b	0.643 ^a	0.510 ^{ab}
12	v1	4699.7 ª	0.370 ^{bc}	50.52 ^{cd}	0.388 ^b	0.659 ª	0.495 ^{ab}
12	v2	4567.7 ^{ab}	0.372 bc	50.34 ^{cd}	0.376 ^b	0.622 ^a	0.534 ª
	v3	3591.6 ^{dc}	0.383 ^{abc}	56.51 ^{bc}	0.380 b	0.635 a	0.495 ^{ab}
	v1	4742.2 ^a	0.347 °	46.11 ^d	0.464 ^a	0.461 ^b	0.433 °
13	v2	5258.3 ª	0.348 °	46.28 ^d	0.477 ^a	0.476 ^b	0.468 bc
	v3	3677.5 ^{dc}	0.349 °	50.08 ^{cd}	0.472 ^a	0.489 ^b	0.439 °

			Photosy	nthesis pigments co	ontent	
Treat	ments	Carotenoid	Chlorophyll a	Chlorophyll b	Total chlorophyll	Chlorophyll <u>a</u> ratio
			mg.g ⁻¹	FW		
11	v1	0.295 ^d	0.562 ^b	0.206 ^{cd}	0.770 ^b	2.801 ab
11	v2	0.331 °	0.534 ^b	0.215 ^{cd}	0.794 ^b	2.445 ^b
	v3	0.324 ^{cd}	0.565 ^b	0.196 ^d	0.762 ^b	2.832 ab
12	v1	0.355 ^{bc}	0.575 ^b	0.204 ^{cd}	0.775 ^b	2.880 ^{ab}
12	v2	0.355 bc	0.598 ^b	0.215 ^{cd}	0.809 ^b	2.865 ab
	v3	0.405 a	0.575 ^b	0.226 °	0.798 ^b	2.583 ab
	v1	0.405 a	0.899 a	0.295 ^{ab}	1.192 ª	3.060 ab
13	v2	0.405 ^a	0.955 ^a	0.311 ^a	1.265 ^a	3.079 ^{ab}
	v3	0.379 ^{ab}	0.883 a	0.275 ^b	1.156 ª	3.246 a

Table 2. Continued

Means followed by the same letters in each column are not significantly different by duncan's test

(I1: Irrigation withholding since 30% flowering stage, I2: Irrigation withholding since 30% pod forming stage, I3: Normal Irrigation v1: Neptun, v2: Octane and v3: Okapi)

Table 3. Meanes comparison of the irrigation and bacteria effects on grain yield, proline, unstructured soluble sugars, protein, catalase and peroxidase antioxidant enzymes photosynthetic pigments content of rapeseed (*Brassica napus* L.) cultivars in terminal cessation of irrigation condition under effect of azotobacter inocullum

Trea	atments	Grain yeild	Proline	Unstructured soluble sugars	Protein	Peroxidase	Catalase
		kg.ha ⁻¹	mg.g ⁻¹ FW	mg.g⁻¹ FW	mg.g ⁻¹ FW	nmol.min.g ⁻¹	nmol.min.g ⁻¹
I1	b1	3532.2 bc	0.447 ^a	64.16 ^a	0.400 °	0.657 ^{bc}	0.517 ^{bc}
11	b2	3599.1 bc	0.445 ^a	61.39 ^a	0.395 °	0.617 ^{cd}	0.519 bc
	b3	3311.3 °	0.376 ^b	62.09 a	0.328 ^d	0.684 ^b	0.540 ab
12	b1	4505 ^{ab}	0.326 °	43.75 °	0.437 ^b	0.551 ^{ef}	0.465 de
12	b2	4153.2 abc	0.367 bc	52.4 ^b	0.395 °	0.597 ^{de}	0.495 ^{cd}
	b3	4200.8 abc	0.431 ^a	61.23 ^a	0.313 ^d	0.769 ^a	0.565 ^a
	b1	4662.8 ^a	0.351 bc	46.14 °	0.487 ^a	0.465 ^g	0.440 °
I3	b2	4664.6 ^a	0.348 bc	47.43 bc	0.483 a	0.432 ^g	0.436 °
	b3	4350.5 ab	0.346 bc	48.90 bc	0.444 ^b	0.528 f	0.464 ^{de}

Table 3. Continued

Tre	atments	Carotenoid	Chlorophyll a	Chlorophyll b	Total Chlorophyll	Chlorophyll <u>a</u> ratio
			mg.g ⁻	¹ FW		
I1	b1	0.3483 bc	0.751 °	0.219 ^b	0.973 ^d	3.471 ^a
11	b2	0.3266 °	0.601 °	0.214 ^b	0.814 ^{ef}	2.848 bc
	b3	0.2758 ^d	0.309 ^g	0.18 °	0.494 ^h	1.756 °
12	b1	0.361 ^b	0.562 ^{ef}	0.220 ^b	0.777 fg	2.626 ^{cd}
12	b2	0.361 ^b	0.674 ^d	0.205 ^{bc}	0.874 °	3.342 ^a
	b3	0.343 bc	$0.512^{\text{ f}}$	0.221 ^b	0.732 ^g	2.361 ^d
	b1	0.404 ^a	0.814 °	0.292 a	1.103 °	2.825 bc
13	b2	0.396 ^a	1.008 a	0.299 ^a	1.304 ª	3.396 ^a
	b3	0.388 ^a	0.916 ^b	0.292 ^a	1.207 ^b	3.166 ^{ab}

Means followed by the same letters in each column are not significantly different by duncan's test

(I1: Irrigation withholding since 30% flowering stage, I2: Irrigation withholding since 30% pod forming stage, I3: Normal Irrigation, b1: Azotobacter chroococcum 63, b2: Azotobacter chroococcum 70,b3: No Azotobacter)

Treatme	ents	Grain veild	Proline	Unstructured soluble sugars	Protein	Peroxidase	Catalase
		Kg.ha ⁻¹	Mg.g ⁻¹ FW	Mg.g ⁻¹ FW	Mg.g ⁻¹ FW	nmol.min.g ⁻¹	nmol.min.g ⁻¹
	V1	4341.2 ^{ab}	0.447 ^a	64.16 ^a	0.400 ^c	0.657 ^{bc}	0.517 bc
B1	V2	4805.3 a	0.445 ^a	61.39 ª	0.395 °	0.617 ^{cd}	0.519 bc
	V3	3553.5 bc	0.376 ^b	62.09 ^a	0.328 ^d	0.684 ^b	0.540 ab
	V1	4421.7 ^{ab}	0.326 °	43.75 °	0.437 ^b	0.551 ^{ef}	0.465 de
B2	V2	4551.8 ª	0.367 bc	52.4 ^b	0.395 °	0.597 ^{de}	0.495 ^{cd}
	V3	3443.4 bc	0.431 a	61.23 a	0.313 ^d	0.769 ^a	0.565 a
	V1	4109.8 abc	0.351 bc	46.14 °	0.487 ^a	0.465 ^g	0.440 ^e
B3	V2	4394.4 ^{ab}	0.348 bc	47.43 bc	0.483 a	0.432 ^g	0.436 °
	V3	3358.4 °	0.346 bc	48.90 bc	0.444 ^b	0.528 f	0.464^{de}

Table 4. Meanes comparison of the bacteria and cultivars effects on grain yield, proline, unstructured soluble sugars, protein, catalase and peroxidase antioxidant enzymes photosynthetic pigments content of rapeseed (*Brassica napus* L.) cultivars in terminal cut off irrigation condition under effect of azotobacter inocullum

Table 4. Continued

			Photosynthesi	s pigments conte	nt	
Treatments	-	carotenoid	Chlorophyll a	Chlorophyll b	Total Chlorophyll	Chlorophyll <u>a</u> Ratio
			mg.g	⁻¹ FW		
	V1	0.3483 bc	0.751 °	0.219 ^b	0.973 ^d	3.471 a
B1	V2	0.3266 °	0.601 °	0.214 ^b	0.814 ^{ef}	2.848 bc
	V3	0.2758 ^d	0.309 ^g	0.18 °	0.494 ^h	1.756 °
54	V1	0.361 ^b	0.562 ef	0.220 ^b	0.777 fg	2.626 ^{cd}
B2	V2	0.361 ^b	0.674 ^d	0.205 bc	0.874 °	3.342 ª
	V3	0.343 bc	0.512 f	0.221 ^b	0.732 ^g	2.361 ^d
	V1	0.404 ^a	0.814 °	0.292 ª	1.103 °	2.825 bc
B3	V2	0.396 ª	1.008 a	0.299 ª	1.304 ^a	3.396 ª
	V3	0.388 ^a	0.916 ^b	0.292 ª	1.207 ^b	3.166 ab

Means followed by the same letters in each column are not significantly different by duncan's test (b1: Azotobacter chroococcum 63, b2: Azotobacter chroococcum 70,b3: No Azotobacter, v1: Neptun, v2: Octane and v3: Okapi)

Table 5. Meanes comparison of the irrigation withholding, bacteria and cultivars effects on grain yield, proline, unstructured soluble sugars, protein, catalase and peroxidase antioxidant enzymes photosynthetic pigments content of rapeseed (*Brassica napus* L.) cultivares in terminal cessation of irrigation condition under effect of azotobacter inocullum

	Treatments		Grain yeild	Proline	Unstructure d soluble sugars	Protein	Peroxidase	Catalase
	Tratments		kg.ha ⁻¹	mg.g ⁻¹ FW	mg.g ⁻¹ FW	mg.g ⁻¹ FW	mol.min.g ⁻¹	nmol.min.g ⁻¹
		V1	3277 ^{ef}	0.455 ^{ab}	67.925 ª	0.402 bc	0.670 bcd	0.517 bcd
	B 1	V2	3961.6 ^{b-f}	0.430 abc	61.973 ^{ab}	0.392 ^{bc}	0.675 bcd	0.530 ^{a-d}
		V3	3357.5 def	0.457 ^a	62.59 ^{ab}	0.405 bc	0.627 ^{c-f}	0.505 ^{b-e}
		V1	3654.1 ^{c-f}	0.452 ^{ab}	63.738 ab	0.402 bc	0.605 ^{c-g}	0.535 abc
I1	B2	V2	$3937.5 \ ^{b-f}$	$0.430 \ ^{abc}$	57.978 abc	0.392 bc	0.637 ^{cde}	0.535 abc
		V3	3205.8 ef	0.452 ab	62.450 ab	$0.390 \ ^{bc}$	0.610 ^{c-g}	0.495 ^{b-f}
		V1	3360.7 def	$0.380 \ ^{\mathrm{a-f}}$	66.205 a	0.337 ^{cd}	$0.687 \ ^{\mathrm{bc}}$	0.597 ª
	B3	V2	3877.5 ^{b-f}	$0.392 \ ^{\mathrm{a-f}}$	57.82 abc	0.307 ^d	0.672 ^{f-j}	0.532 ^{a-d}
		V3	$2695.6 \ ^{\rm f}$	0.355 ^{c-f}	62.253 ^{ab}	0.340 ^{cd}	0.692 ^{bc}	0.532 ^{a-d}
	B1	V1	5025.8 abc	$0.327 \ ^{\rm f}$	42.368 °	0.450 ab	0.560 ^{e-i}	$0.452 ^{def}$
	DI	V2	4934.2 ^{a-d}	0.315 f	41.950 °	0.425 ^{ab}	0.527 ^{g-k}	0.487 ^{b-f}
		V3	3555 ^{c-f}	0.337 ef	46.920 de	0.435 ^{ab}	0.565 ^{e-i}	$0.455 ^{\text{def}}$
	D2	V1	4601.6 ^{a-e}	0.367 ^{c-f}	51.325 ^{cde}	$0.400 \ ^{\mathrm{bc}}$	0.597 ^{c-g}	$0.482 \ ^{b-f}$
I2	B2	V2	4387.2 ^{a-e}	$0.372 \ ^{\mathrm{b-f}}$	50.700 cde	0.395 bc	$0.587 \ ^{d-h}$	$0.517 \ ^{bcd}$
		V3	3470.8 ^{c-f}	0.362 ^{c-f}	55.170 bcd	0.390 bc	0.607 ^{c-g}	$0.485 \ ^{\mathrm{b-f}}$
		V1	4471.8 ^{a-e}	0.415 ^{a-e}	57.873 abc	0.315 ^d	0.820 ª	0.550 ^{ab}
	BB3	V2	4381.7 ^{a-e}	0.427 ^{a-d}	58.388 abc	0.310 ^d	0.852 ^{ab}	0.597 ^a
		V3	3748.9 ^{c-f}	0.450 ^{ab}	67.443 a	0.315 ^d	0.835 ^{ab}	0.547 ^{ab}
	D1	V1	4720.4 ^{a-e}	0.347 ^{c-f}	46.605 de	0.477 ^a	0.422 1	0.427 ^{ef}
	B1	V2	5520 ª	0.345 ^{c-f}	44.743 de	0.490 ^a	$0.475^{\text{ i-l}}$	0.465 ^{c-f}
		V3	3748.1 ^{c-f}	0.360 ^{c-f}	47.0 de	0.492 ^a	0.500 ^{h-l}	0.427 ^{ef}
	D1	V1	5009.5 abc	0.347 ^{c-f}	45.295 de	0.480 ^a	0.432 ^{kl}	0.420 f
I3	B2	V2	5330.7 ^{ab}	0.352 ^{c-f}	45.273 de	0.490 ^a	0.422 1	0.452 def
		V3	3653.7 ^{c-f}	0.345 ^{c-f}	51.733 ^{cde}	0.480 ^a	0.442 ^{jkl}	0.437 ^{ef}
		V1	4496.8 ^{a-e}	0.347 ^{c-f}	46.445 de	0.435 ab	0.527 ^{g-k}	$0.452 ^{def}$
	BB3	V2	4924.1 ^{a-d}	0.347 ^{c-f}	48.820 cde	0.452 ^{ab}	0.532 ^{f-j}	0.487 ^{b-f}
		V3	3630.7 ^{c-f}	$0.342 ^{def}$	51.448 cde	0.445 ^{ab}	0.525 ^{g-k}	$0.452 ^{def}$

Tre	atments		Carotenoid	Chlorophyll a	Chlorophyll b	Total Chlorophyll	Chlorophyll <mark>a</mark> Ratio
		V1	0.352 ^{e-h}	n 0.735 ^{de}	ng.g ⁻¹ FW 0.192 ^{fg}	0.930 ^{de}	3.0832 ª
	B1	V2	0.337 ^{ghi}	0.760 ^{cde}	0.235 ^{cde}	0.997 ^{cd}	3.262 ^{abc}
		V3	0.355 e-h	0.760 cde	0.230 ^{c-f}	0.992 ^{cd}	3.320 abc
		V1	0.287 ^j	$0.587 \ {}^{\mathrm{fgh}}$	0.212 ^{c-g}	$0.797 \ ^{\mathrm{fg}}$	2.820 ^{b-e}
I1	B2	V2	0.357 ^{d-h}	0.607 fg	0.220 ^{c-g}	0.825 efg	2.815 ^{b-e}
		V3	0.335 ghi	$0.607 {\rm ~fg}$	0.210 ^{c-g}	$0.820 { m ~fg}$	2.910 b-e
		V1	0.245 ^k	0.365 ^j	0.212 ^{c-g}	0.582 ⁱ	1.752 ^{gh}
	B3	V2	0.300 ^{ij}	0.235 ^k	0.190 ^g	0.425 ^j	1.250 ^h
		V3	0.282 ^j	$0.327 \ ^{jk}$	0.215 ^{c-g}	0.475 ^j	2.267 efg
		V1	0.350 e-h	0.580 fgh	0.217 ^{c-g}	0.792 ^{fg}	2.745 ^{c-f}
	B1	V2	0.360 ^{d-h}	$0.607 {\rm ~fg}$	0.207 ^{c-g}	0.810 fg	3.020 bcd
		V3	0.372 ^{b-h}	0.497 hi	0.235 ^{cde}	0.730 ^{gh}	2.112 fg
		V1	0.362 ^{c-h}	0.677 ^{ef}	0.197 efg	0.872 ^{ef}	3.492 ^{ab}
12	B2	V2	$0.360 ^{\text{d-h}}$	0.672 ef	0.212 ^{c-g}	0.877 ^{ef}	3.222 ^{abc}
		V3	$0.360^{\text{ d-h}}$	0.672 ^{ef}	0.205 ^{d-g}	0.872 ^{ef}	3.312 ^{abc}
		V1	0.352 ^{e-h}	0.467 ⁱ	0.197 efg	0.662 ^{hi}	2.402 ^{d-g}
	BB3	V2	0.345 fgh	0.515 ^{ghi}	0.225 ^{c-g}	0.740 $^{\rm gh}$	2.355 ^{d-g}
		V3	0.332 hi	0.555 ^{ghi}	0.240 ^{cd}	0.792 fg	2.325 ^{d-g}
		V1	0.407 ^{ab}	0.812 bcd	0.285 ^b	1.092 bc	2.877 ^{b-e}
	B1	V2	0.430 ª	0.815 bcd	0.297 ^{ab}	1.110 ^b	2.772 ^{b-f}
		V3	0.375 ^{b-g}	0.815 bcd	0.292 ^b	1.107 ^b	2.825 ^{b-e}
		V1	0.412 ab	1.015 ^a	0.300 ^{ab}	1.312 ª	2.825 ^{b-e}
13	B2	V2	0.402 ^{abc}	1.017 ^a	0.307 ab	1.322 ª	3.312 ^{abc}
		V3	0.375 ^{b-g}	0.992 ^a	0.290 ^b	1.277 ^a	3.470 ^{ab}
		V1	0.395 ^{a-d}	0.870 ^b	0.302 ^{ab}	1.172 ^b	2.900 ^{b-e}
	BB3	V2	0.382 ^{b-f}	1.035 a	0.330 ª	1.365 ^a	3.152 ^{abc}
		V3	0.387 ^{b-e}	0.842 bc	0.245 °	1.085 ^{bc}	3.445 ^{abc}

Table	5.	Continued
1 ant	.	Commutu

Nome0.0420.0421.0853.445abcMeans followed by the same letters in each column are not significantly different by duncan's test(I1: Irrigation withholding since 30% flowering stage, I2: Irrigation withholding since 30% pod forming stage, I3: NormalIrrigation, b1: Azotobacter chroococcum 63, b2: Azotobacter chroococcum 70,b3: No Azotobacter, v1: Neptun, v2: Octane and v3: Okapi)