

Original article

Environmental Stresses In Crop Sciences Env. Stresses Crop Sci. Vol. 15, No. 1, pp. 231-246 (Spring 2022)

http://dx.doi.org/ 10.22077/escs.2020.3569.1880

Investigation on germination and seedling growth of three Salicornia species in response to different levels of salinity stress originated from sodium chloride using Gompertz function

Yazdan Izadi¹, Majid Nabipour^{*2}, Gholamhassan Ranjbar³

- 1. Ph.D. Student of Agronomy, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran
- 2. Professor of Agronomy, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Iran
- 3. Assistant Professor, National Salinity Research Center, Ggricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

Received 4 August 2020; Accepted 23 September 2020

Extended abstract

Introduction

Salicornia is one of the most important industrial plants of the Chenopodiaceae family, which is grown as oilseed, fodder, or vegetable crop around the world. All Salicornia species produce succulent shoots suitable for leafy vegetable production, but they differ in germination charactristics, seedling growth and physiological parameters. Germination and seedling emergence depend on the specific genotype requirements of each species and the environmental factors such as salinity stress. Salinity stress is one of the major abiotic stresses which negatively limit crop productivity. The aim of the present study was to test biochemical and physiological responses of Salicornia species to salinity stress.

Materials and methods

In order to investigate the seed germination and seedling growth properties of Salicornia, two separate factorial experiments were conducted based on a completely randomized design with four replications and four destructive examples for each replication during 2019. The first experiment (seed investigation) was carried on in the petri dish culture and second experiment (seedling investigation) was conducted using pots in the green house condition. Experimental treatments were six levels of salinity stresses (control, 10, 20, 30, 40 and 50 dS/m) arranged as the first factor and in the second factor was three Salicornia species *S. persica* Golestan, *S. biglovii* and *S. europaea*.

Results and Discussion

Results of analysis of variance revealed that there was significant effect of salinity stress, genotype and interaction effects of both treatment on all measured germination and seedling growth characteristics (p<0.01). In all studied Salicornia species, the maximum value of traits obtain at control condition and the minimum value was observed in 50 dS/m salinity except for germination uniformity, seedling water content and total phenol content. The highest seedling water content (89.44%) was obtained from *S. persica* at 40 dS/m. The maximum flavonoid (0.156 mg/g.fw) and total phenol content (0.031 mg/g.fw) was observed in S. persica at 20 dS/m. Based on the output of Gompertz function (R²adj≥0.95 and RMSE≤3.25), salinity increase from 0 to 50 dS/m, the time to reach 50% of total seed germination was increased from 5.73 to 16.20 days in *S. percia*, 4.42 to 17.07 days in *S.biglovii* and 5.75 to 11.95 days, respectively.

Conclusions

Seed germination traits and seedling growth of Salicornia genotypes exhibited some level of sensitivity to salinity stress. All Salicornia species were germinated successfully at a salinity of 10 dS/m while seed germination was inhibited at 50 dS/m of salinity stress. It was revealed that the Salicornia sp. originated from Iran (*S. persica*) exhibited higher salinity tolerance than the species originated from Europe (i.e., *S. biglovii* and *S. europaea*). In conclusion, all Salicornia spp. exhibited reasonable salinity tolerance in the range of (10 to 30 dS/m) without compromising the high quality of the final yield. Therefore, it could be a promising alternative crop in saline-prone areas of Iran. Now, after understanding the behavior of different Salicoenia species above 10 dS/m salinity and increae of seed germination from 0 to 10 dS/m in, scrutiny of plants reaction between 0 to 10 dS/m in, it is possible to use this finding for a better breeding program of Salicornia species.

Keywords: Flavonoid, Halophyte plants, Sigmoid function, Seedling water content, Total Phenol

Species	EC (dS/m)						
	Control	10	20	30	40	50	
S. persica Gorgan ecotype	12	12	14	20	20	20	
S. biglovii	11	12	19	20	20	20	
S. europaea	14	16	20	19	20	16	

 Table 2. Indicators of stress tolerance in the seedling growth test.

Indicators of stress tolerance	Mathematical relations	References
Stress tolerance (Tol)	Tol = Yp - Ys	(Rosielle and Hamblin, 1981)
Medium productivity (MP)	MP = (Yp + Ys) / 2	(Rosielle and Hamblin, 1981)
Geometric medium productivity (GMP)	$GMP = \sqrt{(Ys)(Yp)}$	(Fernandez, 1992)
Harmonic (Harm)	$Harm = [2(Yp \times Ys) / (Yp + Ys)]$	(Fisher and Maurer, 1978)

Yp: potential yield (seedling dry weight) in each species under a non-stress and Ys: potential yield (seedling dry weight) in each species under a salinity stress condition.

Table 3. Analysis of variance (mean squares) for the effects of Salinity on some germination and seedling traits in Salicornia species (S. biglovii, S. europaea and S. persica Golestan ecotype).

			Germination test				
S.O.V	df	RL	HL	FGP	GR	CVG	SVI
Salinity (S)	5	499.22**	83.58**	13957.46**	0.00003607^{**}	32631.22**	1787.42**
Species (Sp)	2	294.10^{**}	45.72^{**}	935.16**	0.00001316**	8914.81**	424.81**
S × Sp	10	59.76**	3.74**	228.43**	0.00000118^{**}	7751.32**	88.96**
Error	54	13.40	1.06	19.54	0.00000032	395.78	7.83
CV (%)		22.22	18.32	8.08	10.78	12.62	19.07
		Seedling test					
S.O.V	df	SDW	SFW	SH	WC	ТР	Fl
Salinity (S)	5	0.13137**	4.5046**	89.53**	6741.96**	0.00695**	0.0006385**
Species (Sp)	2	0.01850^{**}	2.2272^{**}	12.09**	1798.05**	0.044925^{**}	0.0006528^{**}
S × Sp	10	0.01454^{**}	0.8040^{**}	2.03^{**}	1536.18**	0.002391**	0.0000512**
Error	54	0.00041	0.0182	0.31	8.96	0.0000098	0.0000097
CV (%)		13.90	14.45	13.84	3.92	7.10	20.56

** Significant at the 0.01 probability level

RL: Radical length; HL: Hypocotyl length; FGP: Final germination percentage; GR: Germination rate; CVG: Coefficient of Uniformity of Germination; SVI: Seed vigor index; SDW: Seedling dry weight; SFW: Seedling fresh weight; WC: Water content; SH: Seedling height; TP: Total phenols; Fl: Flavonoid

each species	levels)		Ca	rmination test			
			Gei	GR (no o			
Treatn	nents	RL (mm)	HL (mm)	per d		CVG (%)	SVI
Species Salinity		Mean±SD	Mean±S	-	÷,	Mean±SD	Mean±SD
species	Control	16.3ª±1.39	5.9ª±0.56	0.0065 ^a ±		115.1°±9.5	20.5ª±2.56
	10	16.1ª±3.51	5.4 ^a ±0.66			115.3°±8.5	$17.9^{a}\pm 3.39$
S. persica	20	$12.6^{b} \pm 1.66$	5.1ª±0.67	$0.0005 \pm 0.006^{ab} \pm$		95.8°±13.5	17.9 ± 3.39 $13.0^{b} \pm 1.83$
Gorgan	20 30	$11.6^{b} \pm 1.73$	$3.4^{b}\pm 0.35$	0.0053 ^b ±		157.5 ^b ±49.1	8.0°±0.76
ecotype	30 40	$10.3^{b}\pm 1.18$	$2.9^{b}\pm0.09$	0.0039°±		219.8 ^a ±14.9	$4.9^{d}\pm0.15$
	40 50	10.3 ± 1.18 $10.1^{b} \pm 1.48$	2.9 ± 0.09 $1.6^{c} \pm 0.79$	0.0033°±		$154.8^{b}\pm 30.3$	$0.6^{e} \pm 0.34$
LSD (0.05)	30	2.94	0.85	0.0033 ±		37.8	2.8
LSD (0.03)	Control	2.94 32.6ª±5.73	10.8ª±2.91	0.008a±0		110.5°±4.2	41.0ª±3.54
	Control	$32.0^{\circ} \pm 3.73$ $26.5^{\circ} \pm 4.46$	10.8 ^a ±2.91 8.6 ^b ±0.41	$0.008^{a}\pm 0.008^{a}$		$110.5^{\circ} \pm 4.2$ 109.6° ± 13.7	$41.0^{\pm}\pm 3.34$ $30.4^{b}\pm 4.58$
c	10 20			$0.008^{ab} \pm 0.0070^{b} \pm 0.0070^{b}$			
<i>S</i>	20 20	$24.3^{bc}\pm 5.24$	$8.1^{b}\pm 1.47$			165.4 ^b ±2.5	$23.7^{\circ}\pm 3.76$
bigelovii	30	18.3°±3.68	5.6°±0.12	0.0053°±		253.9ª±8.8	14.6 ^d ±1.93
	40 50	$11.6^{d}\pm1.41$	4.9°±0.24	$0.0040^{d} \pm$		$251.4^{a}\pm 3.8$	$4.6^{e}\pm0.8$
	50	5.6 ^d ±2.05	2.1 ^d ±0.09	0.0028e±		186.0 ^b ±41.5	0.7°±0.19
LSD (0.05)	<u> </u>	6.06	1.99	0.00		27.3	4.4
	Control	24.7ª±4.95	9.5ª±2.45	0.0065ª±		148.5 ^b ±3.1	31.6ª±3.02
~	10	24.3ª±7.68	9.4 ^a ±0.06	0.0054 ^b ±		126.0°±1.7	30.5ª±7.33
<i>S</i> .	20	17.5 ^b ±0.63	7.1 ^b ±0.09	0.0050 ^b ±		137.9 ^{bc} ±9.3	12.4 ^b ±1.45
europaea	30	14.6 ^b ±3.58	5.7 ^b ±0.21	0.0045°±		239.7ª±9.3	7.0°±1.12
	40	12.1 ^{bc} ±4.43	3.3°±0.41	0.0035 ^d ±		223.7ª±13.3	2.3 ^{cd} ±0.87
	50	7.3°±1.14	1.6 ^d ±0.12	0.0017e±		26.1 ^d ±29.1	$0.2^{d}\pm 0.05$
LSD (0.05)		6.58	1.51	0.00	005	36.1	4.96
Seedling test							
		SDW (g per	SFW (g			TP (mg/g	Fl (mg/g fresh
Treatn	nents	pot)	per pot)	SH (cm)	WC (%)	fresh weight)	weight)
Species	Salinity	Mean±SD	Mean±SD	Mean±SD	Mean±SD	Mean±SD	Mean±SD
	Control	0.21ª±0.002	$1.4^{a}\pm 0.069$	8.53ª±0.50	85.4 ^{bc} ±0.51	0.123 ^b ±0.0034	$0.027^{a}\pm 0.0034$
S. persica	10	$0.13^{b}\pm 0.019$	1.2 ^b ±0.051	$6.65^{b}\pm 0.30$	$89.07^{a}\pm0.66$	0.113°±0.0072	$0.028^{a}\pm 0.0081$
Gorgan	20	$0.15^{b}\pm 0.016$	$1.3^{ab}\pm0.06$	5.38°±0.38	$88.8^{ab} \pm 0.29$	$0.156^{a}\pm 0.0034$	0.031ª±0.0012
ecotype	30	$0.10^{\circ}\pm 0.007$	0.75°±0.20	$3.83^{d}\pm 0.25$	85.8 ^{a-c} ±5.05	$0.105^{d}\pm 0.0046$	$0.019^{b} \pm 0.0022$
	40	$0.09^{c}\pm 0.010$	$0.6^{d}\pm 0.089$	$3.58^{d}\pm0.34$	84.69°±2.21	$0.052^{e}\pm 0.0009$	$0.014^{b}\pm 0.0016$
	50	$0.05^{d}\pm 0.003$	$0.3^{e}\pm 0.007$	$0.70^{e} \pm 0.16$	83.72°±0.48	$0.014^{f}\pm 0.0023$	$0.004^{c}\pm 0.0018$
LSD(0.05)		0.016	0.15	0.50	3.40	3.40	0.0057
	Control	0.22 ^b ±0.001	$1.8^{a}\pm0.184$	6.55 ^b ±0.44	$87.66^{a}\pm0.98$	$0.027^{b}\pm 0.0017$	0.022ª±0.0018
	10	$0.33^{a}\pm 0.012$	$1.9^{a}\pm0.788$	7.73ª±0.53	$82.9^{ab}\pm0.95$	$0.031^{a}\pm 0.002$	$0.02^{ab} \pm 0.0012$
<i>S</i> .	20	$0.14^{c}\pm 0.001$	$0.78^{b}\pm0.08$	3.90°±0.38	81.50 ^b ±4.82	0.022°±0.0049	0.014°±0.0063
bigelovii	30	$0.08^{d} \pm 0.008$	$0.65^{b}\pm 0.21$	3.50°±0.32	85.9 ^{ab} ±7.61	$0.017^{d}\pm 0.0011$	$0.016^{bc} \pm 0.001$
	40	$0.04^{e}\pm 0.016$	$0.3^{bc} \pm 0.05$	$2.05^{d}\pm0.57$	$85.9^{ab}\pm 3.68$	$0.011^{e}\pm 0.0008$	$0.014^{bc}\pm 0.001$
	50	$0.0001^{f}\pm 0.0$	$0.0001^{d}\pm 0.0$	$0.0001^{e}\pm 0.0$	0.0001°± 0.0	$0.0001^{f}\pm 0.0012$	$0.0001^d \pm 0.0008$
LSD(0.05)		0.013	0.51	0.62	5.95	5.95	0.0042
	Control	$0.318^{b}\pm0.03$	2.11 ^b ±0.16	5.85 ^b ±0.83	84.89 ^b ±1.62	0.031ª±0.0032	$0.014^{ab}{\pm}0.002$
	10	0.372ª±0.04	2.42ª±0.29	$7.18^{a}\pm1.48$	84.50 ^b ±1.99	$0.030^{a} \pm 0.0003$	$0.015^{a}\pm 0.0003$
<i>S</i> .	20	$0.18^{c}\pm 0.008$	1.43°±0.04	4.05°±0.84	$87.34^{ab}\pm 3.60$	$0.024^{b}\pm 0.0014$	$0.012^{ab}{\pm}0.002$
europaea	30	0.14°±0.027	1.03 ^d ±0.16	$2.08^{d}\pm0.39$	85.51 ^b ±2.32	$0.020^{b}\pm 0.0039$	$0.01^{ab}{\pm}0.0044$
-	40	$0.045^{d}\pm 0.051$	0.43°±0.18	$1.03^{de} \pm 0.38$	89.44ª±2.90	0.015°±0.0037	$0.011^{b}\pm 0.0025$
	50	$0.0001^{d}\pm 0.0$	$0.0001^{f}\pm 0.$	0.0001e±0.0	0.0001°±0.0	$0.0001^{d}\pm 0.0016$	0.0001°±0.001
LSD(0.05		0.047	0.25	1.19	3.50	3.50	0.0037

Table 4. Species × salinity levels interaction on some germination and seedling traits in Salicornia seed (sliced by the each species levels)

Means within each column and each species followed by the same letter are not significantly different ($P \le 0.05$)

RL: Radical length; HL: Hypocotyl length; GR: Germination rate; CVG: Coefficient of uniformity of germination; SVI: Seed vigor index; SDW: Seedling dry weight; SFW: Seedling fresh weight; WC: Water content; SH: Seedling height; TP: Total phenols; Fl: Flavonoid

Fig. 1. Final germination percentage (b, d and f) and germination time course (a, c and e) of three Salicornia species. Cumulative germination data is represented using symbols and germination time course is represented using lines fitted through a three-parameter sigmoidal function (Gompertz).

Treatment	Gompertz 3P							
Species	Salinity	a (%CV)	b (%CV)	X ₀ (%CV)	R ² Adj	RMSE		
	Control	95.03(3.25)	1.58(11.75)	5.73(2.11)	0.991	3.249		
~ .	10	84.90(2.55)	1.49((9.57)	5.84(1.60)	0.994	2.355		
S. persica	20	72.35(1.28)	1.11(7.16)	6.48(0.89)	0.997	1.625		
Gorgan ecotype	30	52.20(1.31)	1.59(8.01)	7.37(1.31)	0.994	1.690		
ecotype	40	34.53(1.12)	1.05(8.64)	7.95(0.91)	0.995	1.048		
	50	10.88(27.42)	8.67(22.47)	16.20(15.51)	0.978	0.263		
	Control	96.95(2.55)	1.70(9.02)	4.42(2.25)	0.995	2.562		
	10	88.14(1.44)	1.66(5.71)	4.60(1.37)	0.997	1.601		
~	20	70.65(0.75)	1.71(4.58)	5.32(1.11)	0.997	1.350		
S. biglovii	30	59.44(2.47)	2.96(9.40)	7.08(2.59)	0.988	2.435		
	40	31.70(6.14)	4.91(12.07)	9.60(4.41)	0.985	1.196		
	50	21.17(30.95)	7.27(24.98)	17.07(13.86)	0.978	0.505		
	Control	94.73(1.21)	2.03(4.40)	5.75(1.01)	0.998	1.410		
S. europaea	10	92.13(1.40)	1.97(5.65)	6.96(1.07)	0.997	1.883		
	20	49.53(0.66)	1.58(3.99)	7.72(0.62)	0.998	0.794		
	30	36.26(4.60)	3.91(11.12)	8.61(3.31)	0.987	1.389		
	40	15.63(5.30)	3.49(13.16)	10.51(2.84)	0.984	0.689		
	50	2.47(21.38)	2.54(34.83)	11.95(5.93)	0.951	0.151		

 Table 5. Model parameter from fitted sigmoid model (Gompertz) on seed germination of three Salicornia species under salinity levels at time

Table 6. Mean comparison of the various indicators of salinity tolerance in Salicornia species

Species	Үр	Ys	Tol	MP	GMP	Harm
S.persica	g 0.214b	0.1046c	0.1094b	0.1600c	0.1472b	0.1368b
Gorgan ecotype <i>S.bigelovii</i>	0.226b	0.1196b	0.1064b	0.1747b	0.1378b	0.1265b
S. europaea	0.318a	0.1482a	0.1698a	0.2535a	0.1860a	0.1675a
LSD (0.05)	0.032	0.0139	0.0201	0.0082	0.0112	0.0150

Means within each column followed by the same letter are not significantly different ($P \le 0.05$).