

Original article

محيطى درعلوم زراى

Environmental Stresses In Crop Sciences *Vol.* 14, No. 4, pp. 1055-1068 *Winter* 2022 http://dx.doi.org/10.22077/escs.2020.3290.1839

Screening of Kabuli-type chickpea genotypes for salinity tolerance under field condition

Z. Nasiri¹, J. Nabati^{2*}, A. Nezami³, M. Kafi³

1. MS. Student of Agronomy, Faculty of Agriculture Ferdowsi University of Mashhad, Mashhad, Iran

2. Assistant Professor, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

3. Professor, Faculty of Agriculture and Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

Received 11 April 2020; Accepted 29 June 2020

Extended abstract

Introduction

Chickpea (*Cicer arietinum* L.) is one of the important legume crops and globally, after beans (*Phaseolus* spp), chickpea is ranked as a second important legume crop (Roy et al., 2010). Chickpea is an important source of proteins for human consumption, especially in the developing countries where people cannot provide animal protein or vegetarian by choice (Zaccardelli et al., 2013). Chickpea plays an important role in the maintenance of soil fertility through nitrogen fixation (Roy et al., 2010). Plants are exposed to wide range of environmental stresses. In among, Salinity is one of the major abiotic stresses causing severe impact on crop production worldwide (Rasool et al., 2012).chickpea is a salt sensitive pulse crop and its yield is seriously affected mainly by salts (Turner et al., 2013). Salinity stress in chickpea adversely affects several morphological features and physiological processes like reduction in growth and ion balance, water status, photosynthesis, increase in hydrogen peroxide, which causes lipid per oxidation and consequently membrane injury. Also proline and carbohydrates are accumulated in plant tissue (Flowers et al., 2010; Ashraf and Harris, 2004). This study is designed to determine the effect of salt stress on physiological and biochemical parameters in chickpea genotypes exhibiting differences in salinity tolerance. The results of this study could provide information on potential physiological and biochemical parameters and could also provide deeper intelligence into tolerance mechanisms than the stresses caused by salinity.

Materials and methods

This experiment was conducted as split-plot based on randomized complete block design with three replications in 2018 at Ferdowsi University of Mashhad, Mashhad, Iran. Salinity with two levels of 0.5 and 8 dSm-1 (NaCl) was considered as main plot and chickpea genotype (17 Kabuli-type genotypes) as sub-plot. The characteristics such as soluble carbohydrates, proline, osmotic potential, MDA, DPPH, relative water content, MSI%, were evaluated in 50% of flowering. At the end of the growing season, crop was harvested and seed yield were determined .

Results

The highest proline and carbohydrates content was observed in MCC65, MCC92 and MCC95 genotypes, and the lowest in MCC12 genotype. Result salinity stress caused increased 24, 19 and 19% in the amount of osmotic potential, MDA and DPPH. Relative leaf water content and membrane stability was showen respectively 10 and 13% reduction by use salinity stress. Survival percentage, number of branches and canopy height had reduction 6, 22 and 57. MCC65, MCC92 and MCC95 genotypes respectively by 0.183, 0.193 and 0.181 (Kg.m-2) had the highest seed yield and MCC98 and MCC298 had the lowest seed yield. The MCC65, MCC95 and MCC92 genotypes had superior traits, including performance in stress conditions compared to other genotypes, and on the other hand, the MCC98 and MCC298 genotypes had the lowest performance. Among 17 chickpea genotypes, the highest sodium content belonged to MCC95 genotype with 9.5 (mg.g.dw-1) weight and the lowest sodium MCC65 genotype with 5.8 (mg.g-1dw). MCC65 had the highest potassium in non-stress and MCC95 had the highest potassium in salinity stress.

Conclusions

The MCC65, MCC95 and MCC92 genotypes had superior traits, including performance in stress conditions compared to other genotypes, and on the other hand, the MCC98 and MCC298 genotypes had the lowest performance. Finally, further study in relation to the top three genotypes in salinity stress conditions is proposed to identify stress tolerance mechanisms as well as infrastructure as breeding programs.

Keywords: Potassium, Osmotic potential, Prolin, Seed yeild, Relative water content

able 1. Used emergea genotypes and then origins						
No	Se	Origin				
1	MCC12		IRAN			
2	MCC65	Flip88-32C	ICARDA			
3	MCC72	5302	ICRISAT			
4	MCC77	Flip86-58C	ICARDA			
5	MCC92	12228	ICRISAT			
6	MCC95	217655	ICRISAT			
7	MCC98	6102	ICRISAT			
8	MCC139	217897	ICRISAT			
9	MCC158	2217	ICRISAT			
10	MCC298	CIYT-610				
11	MCC313	Flip90-183C	ICARDA			
12	MCC420		IRAN			
13	MCC483	Flip93-250C	ICARDA			
14	MCC485	Flip93-252C	ICARDA			
15	MCC500	Sel95TH1722	ICARDA			
16	MCC679		IRAN			
17	MCC776	Flip97-111C	ICARDA			

Table 1. Used chickpea genotypes and their origins

MCC: Mashhad Chickpea Collection

Orga	nic carbon	EC	рН	K	Р	N	Texture
	%	dS.m ⁻¹		mg.k	rg ⁻¹	%	
(0.739	1.2	7.56	157	17.5	0.07	Sandy loam

Table 2. Physical and chemical properties of the soils used in the field experiments

 Table 3. Analysis of variance (Mean squar) efffect of salinity on soluble carbohydrates, proline, osmotic potential, MDA, DPPH, relative water content and MSI in chickpeas genotypes

		Soluble		Osmotic		DPPH	Relative water	
S.O.V	df	carbohydrates	Proline	potential	MDA	DPPH	content	MSI
Block	2	0.938*	0.102 ^{ns}	1.290**	21.76 ^{ns}	0.0013^{ns}	22.67 ^{ns}	9.86*
Salinity(S)	1	33.58**	127.1**	5.642**	1905**	0.1029**	1187**	1972**
Error a	2	0.240	0.080	0.343	12.89	0.0003	65.82	13.04
Genotyp (G)	16	2.849**	2.117**	0.526**	308.5**	0.004^{**}	109.9**	233.7**
$\mathbf{S} \times \mathbf{G}$	16	2.925**	1.331**	0.344**	16.45*	0.0013**	111.7^{**}	8.150**
Error	64	0.163	0.224	0.051	7.570	0.0005	23.40	2.300
CV%		19	15	10	5	6	7	2

ns: no significant,*: significant at probability level of 5%, **: significant at probability level of 1%, CV: Coefficient variation.

Salinity		Soluble		Osmotic				
level	Genotyp	carbohydrate	Proline	potential	MDA	DPPH	RWC	MSI
	MCC12	mg.gfw	2.25de	Mpa	nm.gFw ⁻¹	mg ascorbat.gFw ⁻¹	%	
	MCC12	2.14°	2.35 ^{de}	2.05 ^{ed}	53./1ª	0.270^{4}	/8.1°	80.8**
	MCC65	1.34 ^{rg}	$2.37^{\rm dc}$	1.95 ^{be}	54.20 ^{cu}	0.350 ^{a-j}	64.4 ^{d-n}	88.5ª
	MCC72	2.26 ^{cd}	1.97	1.92 ^{bc}	46.74 ^{gn}	0.317 ^{g-k}	72.4 ^{a-n}	77.1 ^{de}
	MCC77	1.79 ^{er}	1.87 ^r	1.99 ^{bc}	56.74 ^{bc}	0.303 ^{1-K}	87.5ª	71.2 ^{e-g}
	MCC92	1.23 ^{tg}	1.98 ^t	2.10 ^{bc}	57.82 ^{bc}	0.320 ^{f-k}	75.2 ^{a-t}	87.4 ^a
	MCC95	0.75 ^g	1.71 ^f	2.21 ^{bc}	46.94 ^{gh}	0.353 ^{d-j}	61.0 ^{f-h}	86.3ª
	MCC98	1.83 ^{ef}	2.36 ^{de}	2.11 ^{bc}	43.12 ^{ij}	0.323 ^{e-k}	76.7 ^{a-f}	74.9 ^{d-f}
0.5 dS.m ⁻¹	MCC139	1.89 ^{ef}	2.71 ^{de}	1.85 ^{bc}	41.86 ^{ij}	0.350 ^{d-j}	82.2 ^{ab}	76.2 ^{de}
	MCC158	3.37 ^{ab}	1.63 ^{fg}	1.90 ^{bc}	44.97 ^{h-j}	0.307 ^{e-k}	73.1 ^{a-h}	75.8 ^{de}
	MCC298	0.74^{g}	1.95 ^f	1.50°	34.33 ^j	0.350 ^{d-j}	76.7 ^{a-f}	76.9 ^{de}
	MCC313	0.70^{g}	1.73^{f}	1.99 ^{bc}	43.43 ^{ij}	0.333 ^{e-k}	73.7 ^{a-h}	72.2 ^{e-g}
	MCC420	1.67^{f}	1.78^{f}	1.88 ^{bc}	54.87 ^{cd}	0.367 ^{c-i}	80.9^{ab}	85.4 ^{ab}
	MCC483	1.46 ^f	1.87^{f}	2.06 ^{bc}	36.73 ^{ij}	0.293 ^{jk}	79.2 ^{a-d}	81.7 ^{bc}
	MCC485	1.90 ^{ef}	1.31 ⁱ	2.01 ^{bc}	37.55^{i}	0.343 ^{e-j}	67.5 ^{b-h}	70.7^{fg}
	MCC500	0.76 ^g	1.79^{f}	1.70 ^{bc}	46.98^{gh}	0.320 ^{f-k}	73.2 ^{a-h}	73.3 ^{d-f}
	MCC679	1.44^{f}	1.85 ^f	2.02 ^{bc}	43.08 ^{ij}	0.313 ^{g-k}	72.4 ^{a-h}	72.6 ^{e-g}
	MCC776	1.75 ^{ef}	1.92^{f}	1.80 ^{bc}	44.13 ^{h-j}	0.343 ^{e-j}	72.5 ^{a-h}	72.7 ^{e-g}
	MCC12	2.50 ^{cd}	3.66 ^{bcd}	2.11 ^{bc}	64.06 ^{ab}	0.377 ^{b-h}	63.6 ^{d-h}	70.9 ^{fg}
	MCC65	4.68 ^a	6.52ª	3.50 ^a	55.04 ^{cd}	0.453ª	73.4 ^{a-h}	84.9 ^{ab}
	MCC72	3.43 ^{ab}	3.92 ^{bc}	2.20 ^{bc}	53.75 ^{de}	0.420 ^{a-d}	64.3 ^{d-h}	66.8 ^{l-m}
	MCC77	3.59 ^{ab}	4.66 ^b	2.06 ^{bc}	62.71 ^{ab}	0.373 ^{c-i}	76.1 ^{a-f}	65.5 ^{mn}
	MCC92	3.55 ^{ab}	6.59ª	3.53ª	69.05ª	0.430 ^{a-c}	58.2 ^h	79.8 ^{cd}
	MCC95	2.95 ^{bc}	4.02 ^{bc}	3.37ª	57.28 ^{bc}	0.446^{ab}	66.8 ^{b-h}	75.9 ^{de}
	MCC98	2.86 ^{bc}	4.19 ^{bc}	2.35 ^b	57.60 ^{bc}	0.377 ^{b-h}	64.3 ^{d-h}	65.5 ^{mn}
	MCC139	3.04 ^{bc}	4.87 ^b	2.13 ^{bc}	48.24 ^{f-h}	0.393 ^{a-c}	74.0 ^{a-g}	68.5^{fg}
8	MCC158	0.63 ^g	3.25 ^{c-e}	2.05 ^{bc}	56.61 ^{bc}	0.370 ^{c-i}	65.6 ^{c-h}	64.0 ^{gh}
o dS.m ⁻¹	MCC298	1.62^{f}	3.20 ^{c-e}	2.23 ^{bc}	42.13 ^{ij}	0.370 ^{c-i}	69.5 ^{b-h}	64.37 ^{gh}
	MCC313	1.61 ^f	3.55 ^{b-d}	2.14 ^{bc}	52.02 ^{ef}	0.380 ^{b-g}	72.2 ^{a-h}	63.7 ^{gh}
	MCC420	2.21 ^{cd}	3.95 ^{bc}	2.10 ^{bc}	63.44 ^{ab}	0.417^{a-d}	62.7 ^{e-h}	76.6 ^{de}
	MCC483	2.79 ^{b-d}	3.27 ^{c-e}	2.25 ^{bc}	42.05 ^{ij}	0.340 ^{e-k}	64.9 ^{d-h}	72.8 ^{e-g}
	MCC485	4.58ª	4.11 ^{bc}	2.13 ^{bc}	44.21 ^{hij}	0.357 ^{d-j}	77.6 ^{a-e}	65.1 ^{gh}
	MCC500	1.66 ^f	4.05 ^{bc}	2.31 ^{bc}	54.17 ^d	0.380 ^{b-g}	71.0 ^{b-h}	65.7 ^{gh}
	MCC679	0.76^{g}	3.14 ^{c-e}	2.19 ^{bc}	55.41 ^{bc}	0.363 ^{c-j}	67.4 ^{b-h}	61.9 ^h
	MCC776	4.07 ^{ab}	4.15 ^{bc}	2.40 ^b	56.38 ^{bc}	0.390 ^{a-f}	59.2 ^{gh}	62.3 ^h

Table 4. Effect of salinity stress on soluble carbohydrates, proline, osmotic potential, MDA, DPPH, relative water content and MSI in chickpeas genotypes

Within each column, means fallowed by the same letter are not significantly different based on Duncan test (p<0.05).

		Plant	Number of	100-seed					
S.O.V	df	heigh	Branch	weigh	Seed yield	Survival	Na	K	Na/K
Block	2	54.72**	15.22**	12.77 ^{ns}	0.0014**	12.56 ^{ns}	0.820 ^{ns}	0.0869^{*}	6.190 ^{ns}
Salinity (S)	1	1068**	64.3**	466**	0.1057**	900**	4230**	7.409**	2266**
Error a	2	0.740	5.765	5.775	0.0001	12.56	0.880	0.0732	5.630
Genotyp (G)	16	1390**	1.974^{ns}	59.56**	0.0078^{**}	24.63 ^{ns}	5.650**	0.617^{**}	19.35**
$\mathbf{S} \times \mathbf{G}$	16	26.54**	1.928^{*}	10.96 ^{ns}	0.0016**	24.63 ^{ns}	6.340**	0.254**	17.94**
Error	64	5.02	1.844	9.745	0.000004	26.88	0.440	0.0258	3.090
CV%		6	17	12	2	5	8	14	27

 Table 5. Analysis of variance (mean square) effect of salinity on plant heigh, number of branch, 100-seed weigh, seed yield, survival, Na, K and Na/K (%) in chickpeas genotypes

ns: no significant *: significant at probability level of 5%, **: significant at probability level of 1%, CV: Coefficient variation.

 Table 6. Effect of salinity stress on plant heigh, number of branch, 100-seed weigh, seed yield, survival, Na, K and Na/K

 (%) in chickpeas genotypes

Salinity		Plant	Number of	100-seed	Seed				
level	Genotyp	height	branch	weigh	yield	Survival	Na	K	Na/K
		cm	o o o sh	g	Kg.m ⁻²	%	mg.go	1w ⁻¹	1 500
	MCC12	41.6700	9.33 ^{ab}	26.00 ^a	0.101 ^j	100 ^a	1.41	0.96 ^{rg}	1.50 ^e
	MCC65	42.67 ^{ab}	8.00 ^{ab}	29.67 ^a	0.218^{a}	100 ^a	1.36 ^r	1.40 ^{de}	1.08 ^e
	MCC72	47.00 ^a	9.33 ^{ab}	29.67ª	0.111 ^j	100^{a}	1.62 ^t	1.06 ^{et}	1.51°
	MCC77	49.67ª	9.00 ^{ab}	28.33ª	0.143 ^g	100 ^a	1.54 ^f	0.87^{g}	1.81 ^e
	MCC92	44.33 ^{ab}	8.33 ^{ab}	32.00 ^a	0.219ª	100 ^a	1.47^{f}	1.09 ^{e-k}	1.82 ^e
	MCC95	44.00^{ab}	8.00^{ab}	33.33ª	0.196 ^b	100^{a}	1.68^{f}	1.13 ^{ef}	1.51 ^e
	MCC98	41.00 ^{b-d}	8.33 ^{ab}	31.67ª	0.135 ^h	100 ^a	1.50^{f}	0.55^{h}	3.07 ^{de}
	MCC139	43.00 ^{ab}	9.33 ^{ab}	33.33ª	0.156^{f}	100 ^a	1.19^{f}	0.84^{g}	1.35e
0.5 dS.m ⁻¹	MCC158	42.33 ^{ab}	8.33 ^{ab}	32.33 ^a	0.165 ^e	100 ^a	1.59 ^f	0.68 ^g	2.36 ^{de}
	MCC298	32.67^{fg}	9.33 ^{ab}	29.33ª	0.113^{i}	100 ^a	1.32^{f}	0.71 ^g	1.90 ^e
	MCC313	44.33 ^{ab}	10.00 ^a	23.67ª	0.128 ^h	100 ^a	1.32^{f}	0.63 ^g	2.26 ^{de}
	MCC420	44.00^{ab}	8.33 ^{ab}	23.33ª	0.135^{h}	100 ^a	1.48^{f}	1.12 ^{ef}	1.34 ^e
	MCC483	44.67 ^{ab}	7.67 ^{ab}	33.33ª	0.178°	100 ^a	1.12^{f}	0.99^{fg}	1.13°
	MCC485	47.00 ^{ab}	9.00 ^{ab}	29.00ª	0.174 ^{cd}	100 ^a	1.50^{f}	0.79^{g}	1.98°
	MCC500	37.33 ^{d-f}	9.33 ^{ab}	27.00ª	0.162 ^{ef}	100 ^a	1.30^{f}	0.78^{gh}	1.70 ^e
	MCC679	38.33 ^{cd}	9.67^{ab}	26.67ª	0.148 ^g	100 ^a	1.46^{f}	0.80^{g}	1.91 ^e
	MCC776	36.33 ^{ef}	9.00 ^{ab}	25.00ª	0.143 ^g	100 ^a	1.98^{f}	0.73 ^{gh}	2.78^{de}
	MCC12	34.00^{fg}	8.00^{ab}	22.33ª	0.035°	83ª	15.39 ^{ab}	1.12 ^{ef}	13.65 ^{ab}
	MCC65	39.67 ^{cd}	8.00^{ab}	28.33ª	0.149 ^g	100 ^a	15.23 ^{ab}	2.20 ^b	4.64 ^d
	MCC72	36.33 ^{ef}	8.00^{ab}	22.00 ^a	0.100^{i}	96ª	15.32 ^{ab}	1.52 ^{cd}	10.20 ^{bc}
	MCC77	47.00 ^{ab}	7.67^{ab}	22.00 ^a	0.143 ^g	95ª	15.39 ^{ab}	1.33 ^{de}	11.61 ^{ab}
	MCC92	44.33 ^{ab}	8.33 ^{ab}	28.67ª	0.167 ^{de}	97ª	14.76 ^{bc}	1.79 ^{bc}	6.09 ^{cd}
	MCC95	43.00 ^{ab}	7.67^{ab}	31.00 ^a	0.166 ^e	99ª	17.37ª	2.76 ^a	6.29 ^{cd}
	MCC98	35.33 ^{ef}	7.00^{ab}	25.33ª	0.047 ⁿ	95ª	12.13 ^{cde}	1.37 ^{de}	8.92 ^{bc}
	MCC139	36.33 ^{ef}	7.00^{ab}	30.67 ^a	0.086 ^k	94ª	16.23 ^{ab}	1.97 ^{bc}	8.25 ^{bc}
8 dS.m ⁻¹	MCC158	35.33 ^{ef}	8.00^{ab}	27.67ª	0.071^{1}	90ª	14.79 ^{bc}	1.03 ^{efj}	14.52 ^{ab}
	MCC298	28.67 ^g	5.67 ^{ab}	19.00ª	0.040 ^{no}	96ª	17.06ª	1.31 ^{de}	13.37 ^{ab}
	MCC313	39.33 ^{cd}	6.67 ^{ab}	20.67ª	0.065 ^{lm}	95ª	13.28 ^{cd}	1.39 ^{de}	9.62 ^{bc}
	MCC420	28.00 ^g	7.33 ^{ab}	21.33ª	0.061 ^{lm}	89 ^a	14.87 ^{bc}	1.17 ^{ef}	12.81 ^{ab}
	MCC483	34.33 ^{fg}	5.33 ^b	24.33ª	0.065 ^{lm}	94ª	14.57 ^{bc}	1.11 ^{ef}	13.31 ^{ab}
	MCC485	41.33 ^{bc}	7.67 ^{ab}	25.33ª	0.092 ^k	95ª	10.17 ^{de}	1.00 ^{e-g}	15.93ª
	MCC500	24.33 ^g	6.67 ^{ab}	24.67ª	0.065^{lm}	90ª	12.96 ^{c-e}	$0.97^{\rm fg}$	14.00 ^{ab}
	MCC679	30.67 ^{fg}	8.33 ^{ab}	24.33ª	0.087 ^k	95ª	13.46 ^{cd}	1.27 ^{de}	10.78 ^{a-c}
	MCC776	32.33 ^{fg}	6.00 ^{ab}	23.33ª	0.066 ^{lm}	96ª	10.82 ^{de}	0.97 ^{fg}	16.13ª

Within each column, means fallowed by the same letter are not significantly different based on Duncan test (p<0.05).

	Factor		
Parameters	PCA 1	PCA 2	
Proporation of total variation (%)	45.66	13.47	
Soluble carbohydrates	-0.55	0.30	
Proline	-0.85	-0.02	
Osmotic potential	-0.89	0.05	
DPPH	-0.82	-0.12	
MDA	-0.45	-0.84	
MSI	-0.75	-0.11	
RWC	0.01	0.55	
Plant height	-0.67	0.16	
Number of branch	-0.54	-0.51	
100-seed weigh	-0.65	0.13	
Seed yield	-0.89	0.08	
Survival	-0.55	0.65	
Na	0.41	0.24	
К	-0.81	0.28	
Na/K	0.84	-0.11	

Table 7. Principal component loading for the measured trait of chickpea genotypes

Fig 1. Biplot based on two major principal component factors.