

Original article

ديطي درعلوم زرجى

Environmental Stresses In Crop Sciences Vol. 14, No. 3, pp. 849-860 Fall 2021 http://dx.doi.org/10.22077/escs.2019.2731.1717

QTL mapping for physiological traits affecting lead tolerance in the *Hordeum* vulgare L.

A. Rahmani¹, A. Asghari^{2*}, H. Jafari³, O. Sofaliyan²

- 1. PhD student of plant breeding, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Mohaghegh Ardabil, Ardebil, Iran
- 2. Associate Professor Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Mohaghegh Ardabil, Ardebil, Iran
- 3. Agriculture and Natural Resources Research, Center of Zanjan, Zanjan, Iran

Received 30 July 2019; Accepted 2 October 2019

Extended abstract

Introduction

Human activities such as mining and industrials activities have increasingly affected soil contamination through the sedimentation of heavy metals. This issue is concerned as a global problem. All heavy metals are potentially poisonous, which vary based on their biologic available concentrations and the sensitivity of organisms which are exposed to the heavy metal. One of the main heavy metals is Lead. Lead is a potential pollutant that readily accumulates in soils and sediments. Pb is considered a major troublesome poison, crop productivity sharply declines in soils contaminated by Pb. The poisonous characteristics of lead on plants are attributed to chlorosis, declined growth, blackening of root system, upsets mineral nutrition and water balance, changes in hormone status, and the effects on the structure and permeability of membrane. In recent years, many plants have been destroyed due to the increased pollution of the earth by heavy metals, and which has led researchers are interested in soil improvement, the production and use of resistan. Most of the important agricultural traits, such as yield, grain quality and resistance, or tolerance of live and non-live stresses in nature, are complex qualitative traits. These traits are usually controlled by multiple quantitative traits (QTLs), which are strongly influenced by the genetic context of the creaturet plants, and the identification of mechanisms and genes associated with heavy metal tolerance. This research was carried to identification of QTL traits related to lead toxicity tolerance in barley.

Materials and methods

In this study, we used 94 double haploid from Dom and Rec parents that were planted in a completely randomized design with three replications in twenty-cm diameter pots. Then at 2- to 3-leaves stage, seedlings were treated by 0 (control) and 2000 ppm density lead nitrate. Physiological traits such as substomatal CO_2 , transpiration rate, photosynthesis rate, stomatal concentration and plant greenness after 24 under stress, were measured at the beginning heading stage. In order to investigate the frequency distribution of data and their variation under stress and normal conditions, Spss program version 23 was used. After observing the continuous and quantitative variation among progenies to studied traits, in order to locate the lead-tolerance genes, Using Mapchart 2.32 and MapQTLs Software, chromosomal regions associated physiological traits were identified on seven chromosome of barley.

Results

The phenotypic Analysis of the studied traits showed a quantitative and continuous variation. the studied traits showed normal distribution in both non stress and stress conditions The genetic which is lead tolerance is controlled depending on the physiological indices of different parts in the genome of the barely. In this study No QTL was observed for the studied traits under normal conditions. among the traits sub-stomatal CO2, transpiration rate, plant greenness after 24 under stress, stomatal concentration, photosynthesis rate, QTL was observed Under stress conditions with lead, two QTL discovered for sub-stomatal CO2 on chromosome 6, two QTL for transpiration rate on chromosome 3, four QTL for Stomatal Conduction on chromosomes 1 and 3, four QTL for photosynthesis rate on chromosomes 3 and 2, four QTL for plant greenness after 24 under stress on chromosomes 1, 4 and 5. Phenotypic variation justified by these QTLs varied 10.5% to 19.10%.

Conclusion

The results of this study showed that the OWB mass mapping can be used as a proper mass mapping and as a model for studying the genetic of lead tolerance in plants. The results of this study also showed that various physiological traits of barely under lead stress conditions are manipulated by different genes. Precisely locating lead resistant QTL is the most important step in cloning and finding the function of the genes involved in lead resistance. In order to use QTL detection methods for understanding the attributes related to lead resistance, it is necessary to divide lead toxicity resistance into smaller traits. This task is achieved through considering the events occurring in lead poisoning and the determining the reason why some plants are tolerate.

Keywords: Chromosome, Lead Contamination, QTL Mapping, Resistance, Sensitivity

		Plant greenness after 24	Plant greenness after	Photosynthesis
S.O.V	df	days under stress	12 days under stress	rate
Lead	3	143.45**	94.22**	16.66**
Genotype	1	172.23**	10.00	0.36
Lead× Genotype	3	57.83**	84.74**	21.88**
Error	32	6.46	6.97	1.93
CV%		7.78	8.81	14.36

Table 1. Analysis of variance (M	an squares) fo	r morphological	traits in	two parents'	of barley
mapping population					

	Df	Stomatal	Transpiratio	Sub-stomatal	Leaf surface
S.O.V		Conduction	n rate	CO ₂	Temperature
Lead	3	0.002^{**}	0.94**	33714.06**	35.32**
Genotype	1	0.001^{**}	2.39**	71288.90**	42.02**
Lead× Genotype	3	0.003**	2.24**	36550.03**	54.09**
Error	32	0.000004	0.09	792.07	6.14**
CV%		3	14.92	10.26	8.25

** and *, significant at 1% and 5% Probability levels, respectively

Table 2. Mean comparison of Rec and Dom parents in different lead levels

Parentes	Lead Doses (ppm)	Plant greenness after 24 days under stress	Plant greenness after 12 days under stress	Photosynthesis rate
	Control	35.6	31.6	9.18
REC 15	1000ppm	32.8	31	10.14
	1500ppm	34.2	30.34	9.38
	2000ppm	21.4	22.8	2.39
	Control	34	31.4	8.96
DOM	1000ppm	35.9	30.6	8.05
DOM	1500ppm	34.8	30.14	8.51
	2000ppm	32.6	31.8	8.80
LSD		3.27	3.40	1.79

Table 2. Continued

Parentes	Lead Doses	Stomatal	Transpiration	Sub-stomatal	Leaf
	(ppm)	Conduction	rate	CO ₂	surfaceTemperature
	Control	0.076	2.26	342.80	31.60
DEC	1000ppm	0.074	2.16	302	31.40
REC	1500ppm	0.078	2.10	315.60	30.34
	2000ppm	0.016	0.59	84	22.80
	Control	0.074	2.24	292.40	31.40
DOM	1000ppm	0.080	2.14	285	30.60
DOM	1500ppm	0.066	2.50	281.80	30.14
	2000ppm	0.068	2.10	290.60	31.80
LSD		0.0025	0.38	36.31	3.19

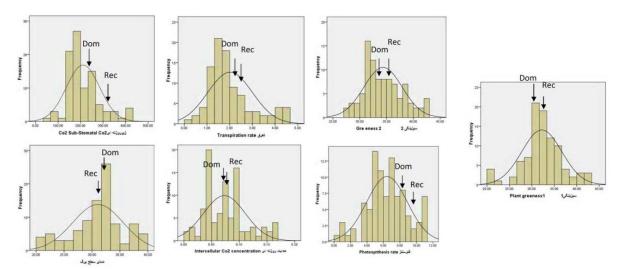


Fig. 1. Frequency distributions of studied traits in normal condition

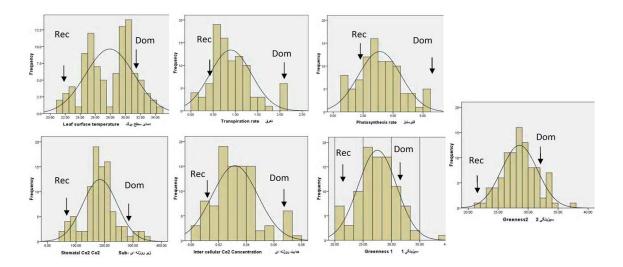


Fig. 2. Frequency distributions of studied traits in stress condition

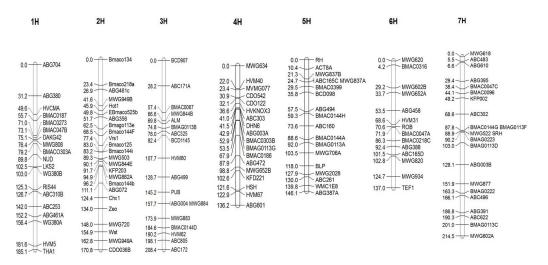


Fig. 3. The prepared linkage map in barley (Marcel et al, 2007)

Table 3. Statistics of traits studied under normal and stress condition

	Normal condition							
	Mean	Std.deviation	Kurtosis	Skewness	Min	Max		
Temperature Leaf surface(°C)	31.06	4.523	0.065	-0.518	20.70	39.02		
Sub-stomatal CO ₂ (µmol/mol)	210.85	74.116	0.933	0.848	77	485		
Transpiration rate(mmol m ⁻² s ⁻¹)	2.02	0.987	0.238	0.732	0.29	4.48		
Stomatal Conduction(mol m ⁻² s ⁻¹)	0.07	0.00018	-0.035	0.054	0.01	0.17		
Photosynthesis rate (µmol m ⁻² s ⁻¹)	6.42	1.47	-0.156	-0.04	0.62	11.58		
Greenness after 12 days stress(mol/cm ⁻²)	32.23	4.44	0.983	-0.313	22.5	44.05		
Greenness after 24 days stress (mol/cm ⁻²)	34.35	3.58	-0.381	0.428	20.95	44.95		

Table 3. Continued

	Stress condition							
	Mean	Std.deviation	Kurtosis	Skewness	Min	Max		
Temperature Leaf surface(°C)	27.93	3.24	-0.895	-0.228	21.50	34.20		
Sub-stomatal CO ₂ (µmol/mol)	183.95	60.28	0.686	0.174	49.5	350		
Transpiration rate(mmol m ⁻² s ⁻¹)	0.89	0.467	0.084	0.056	0.15	2.06		
Stomatal Conduction(mol m ⁻² s ⁻¹)	0.03	0.00001	0.053	0.012	0	0.08		
Photosynthesis rate (µmol m ⁻² s ⁻¹)	3.11	0.12	-0.483	0.269	0.8	6.37		
Greenness after 12 days stress(mol/cm ⁻²)	27.52	3.39	0.748	0.121	20.80	39.30		
Greenness after 24 days stress (mol/cm ⁻²)	28.55	3.01	0.411	0.089	23.7	37.85		

Table 4. Parameters of QTLs identified by employing MQM method for the studied traits in the OWB population under lead stress

		Position						Permutation
Traits	Chromosome	(CM)	QTL	Marker interval	Expl%	Add	LOD	test
Transpiration	3Н	40-100	$QH3Tr_1$	Alm-ABC325	12.5	-1.11	3.02	2.75
rate	3Н	100-140	$QH3Tr_2$	Hvm60-Pub	13.1	0.97	2.93	2.75
Stomatal	1H	100-140	QH1Sc	Lks2-Ris44	11.4	3.6	3.14	
conduction	3Н	40-100	QH3Sc1	Alm-ABC325	13.1	-2.7	3.21	
	3Н	10-100	QH3Sc ₂	Bmac0067-Alm	12,4	2.6	3.14	2.85
	3Н	10-100	QH3Sc₃	MWG844B- Bmag0113b	12.8	-2.13	3.24	
Sub-stomatal CO2	6Н	0-10	QH6Ss1	Bmacoo47a- ABG388	17.3	4.3	3.72	2.02
	6Н	50-100	QH6Ss ₂	MWG620- MWG602B	15.2	8.9	2.84	2.02
Plant greenness	$1 \mathrm{H}$	50-150	QH1Pg1	Nud- WG380B	11.3	-2.15	3.01	
after 24 under	1H	10-100	$QH1Pg_2$	HVCMA-Bmac0273	14.5	1.78	4.77	
stress	5H	50-100	QH5Pg	Bmac0144a- MWG706A	13.4	-2.31	4.21	2.69
	4H	10-60	QH4Pg	CD0542- HVKNOX3	12.3	-3.17	3.53	
Photosynthesis	3Н	40-100	QH3Ph1	Alm-ABC325	10.5	-1.17	3.07	
rate	3Н	40-100	QH3Ph ₂	MWG844B- Bmag113b	19.1	-0.91	3.85	2.67
	2H	50-150	QH2Ph	ABG072-Zeo	13.8	1.03	2.93	
	3H	100-150	QH3Ph3	Hvm60-Pub	11.6	0.95	2.99	

Table 5. Phenotypic correlation coefficients under normal conditions (values on upper triangular Matrix) and under stress conditions (values on stress triangular Matrix) in barley Genotype

Traits	1	2	3	4	5	6	7
Leaf surface Temperature	1	-0.41**	0.21^{*}	-0.14	-0.14	-0.1	-0.21*
Sub-stomatal CO2	-0.56**	1	0.3**	0.29**	0.14	0.04	0.11
Transpiration rate	0.33**	0.26^{*}	1	0.83**	0.79^{**}	0.18	0.16
Stomatal conduction	-0.32**	0.6**	0.65**	1	0.80^{**}	0.19	0.23*
Photosynthesis rate	-0.19	0.16	0.61**	0.72**	1	0.22^{*}	0.25*
Greenness after 12 days stress	0.01	-0.11	-0.07	-0.01	0.13	1	0.59^{**}
Greenness after 24 days stress	0.12	-0.11	0.02	0.01	0.09	0.8^{**}	1

** and *, significant at 1% and 5% Probability levels, respectively

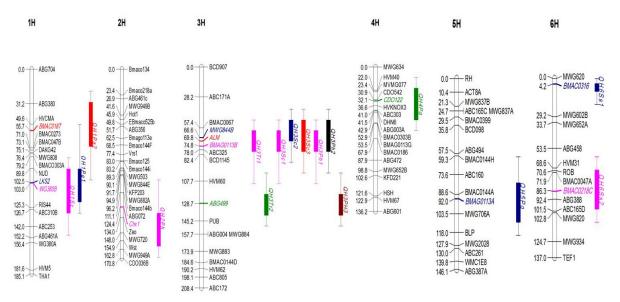


Fig. 4. Lead-related QTLs for studied traits and their position in the barly linkage map