

تنشهكامحيطى درعلوم زراعى

Environmental Stresses In Crop Sciences *Vol.* 14, *No.* 1, *p.* 99-108 *Spring* 2021 http://dx.doi.org/10.22077/escs.2019.2503.1660

Original article

The effect of seed priming and foliar application of anti-stress materials on quantitative and qualitative yield of chickpea (*Cicer arietinum* L.) Adel cultivar under irrigation regimes

E. Zarei-Chghaalahi¹, S.A.M. Modarres-Sanavy^{2*}

1. M.Sc. student of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran 2. Professor, Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

Received 26 May 2019; Accepted 2 October 2019

Introduction

The chickpea is mainly cultivated in agricultural systems in arid and semi-arid regions and needs low input. Specifications such as the ability to fix nitrogen, deep rooting and the effective use of atmospheric depression have led the plant to play an important role in stabilizing crop production systems. On average chickpea seed contain 23% protein is highly digestible. Water deficit stress is the most important factor limiting the growth and agricultural products in arid and semi-arid regions of the world. Drought stress is one of the most important factors in grain yield reduction of chickpea during pod formation and grain filling. Amino acids facilitate the transfer of food in the vascular system by improving the permeability of the cell membrane. In plants under drought stress or salinity, proline is widely used as an osmotic regulator. In fact, amino acids are the main chain in the protein structure, and in turn, are effective in plant growth. Increased proline in chickpea leaves is a mechanism for osmotic adjustment under water stress conditions. Using the priming method is one of the methods for improving seed function and increasing the quality of seeds in adverse environmental conditions, In fact, priming shortens the time from planting to emergence and protects seed of harmful biotic and abiotic factors in the critical stage of seedling establishment. These treatments also result in the emergence of uniformity, resulting in a uniform establishment and improved yield in the crop.

Materials and methods

In order to study the effect of Anti-stress materials priming and foliar application on quantitative and qualitative yield of chickpea (*Cicer arietinum*) Adel cultivar under Irrigation regime an experiment was conducted at the Research Farm of Agriculture of Tarbiat Modares University as randomized complete block design arrangement in split plot with three replications. The main plots were included 1- optimal irrigation 2- Moderate Irrigation 3- severe Irrigation as withholding irrigation until depletion of 20, 45 and 70 percent of soil available water at root development zone respectively and then the plots were irrigated to field capacity from flowering to plant harvest. Priming and foliar application of anti-stress materials including proline, valine, alanine, commercial combination of amino acids and distilled water together with without anti-stress materials were randomized to the subplot units.

Results and discussion

The results showed that priming and foliar application of anti-stress materials and optimal irrigation incressed the number of primary branches to the 58.31% and 36.38%, plant fresh weight to the 108.25% and 36.16%, chlorophyll a to the 40.90% and 68.35%, number of seeds/plant to the 74.48% and 34.66%, pod per plant to the 48.13% and 45.12%, duration of ripening to the 9.53% and 8.65, yield forage to the 30.56% and 39.44%, biological yield to the 65.16% and 44.82% in chekpea in compring with using severe irrigation and without priming and anti-stress materials foliar application treatments repectively. Also 1000 kernel weight and harvest index were increased %20.67 and 27.82% in optimal irrigation related to severe irrigation. Interaction effects between irrigation regimes and anti-stress materials on chlorophyll b showed that the highest rate chlorophyll b related to optimal irrigation with using commercial amino acids to to the 80% and the least it related to severe irrigation without anti-stress materials to the 24%. Application of amino acids was significant in most traits such as number of primary branches, plant fresh weight, chlorophyll a, chlorophyll b, Number of seeds/plant, pod per plant, duration of ripening, yield forage, biological yield.

Conclusion

Drought stress reduced photosynthesis and limited the amount of assimilate and thus reduced the yield and yield components in this experiment. In most cases, the application of priming and foliar application of amino acids had a positive effect on the traits, including number of primary branches, plant fresh weight, chlorophyll a, chlorophyll b, number of seeds/plant, pod per plant, duration of ripening, yield forage, biological yield at drought stress condition. Therefore, the use of amino acids, especially its commercial combination or proline, is recommended to reduce the effects of water deficit stress in the chickpea Adel cultivar.

Keywords: Amino acid, Biological Yield, Water deficit stress, Yield components.

Table 1. S	Some physical	and chemical pr	operties o	f field soil		
Denth	EC*10 ³	PH of nast	00	Av P	Av K	,

Depth	EC*10 ³	PH of past	OC	Av.P	Av.K	Total N	Clay	Silt	Sand	Texture
	mmohs/cm		%	p.p	.m		%			
0-30	1.4	7.20	0.97	820	820	0.09	6	13	81	LS
30-60	0.85	7.56	1.1	829	829	0.11	7	11	82	LS

Table 2. Mean squares of traits under water deficit stress and priming and foliar application	Anti-stress materials

			plant				
		Number of	Fresh	Chlorophyll	Chlorophyll	Number of	Pod per
S.O.V	df	branches	weight	a	b	seeds/plant	plant
Replication	2	53.130	22.17	12.57**	0.09	5.46	83.49
Irrigation regime (I)	2	540.02**	5301.3**	6.96**	0.06	1909.07**	141.71**
Error (a)	4	23.58	97.56	0.06	0.03	52.25	97.32
Anti-stress materials (R)	5	67.31*	371.07**	3.56**	0.14^{**}	149.50**	348.18**
I * R	10	2.33	42.12	0.14	0.01^{*}	6.29	18.00
Error (b)	30	21.30	89.84	0.01	0.006	34.31	68.32
CV%		19.86	17.24	20.19	15.0	15.56	18.31

Table 2.Continued

S.O.V	df	Duration of ripening	Yield forage	1000 Kernal weight	Biological yield	Harvest index
Replication	2	23.29	383679.17	1161.35	293554.35	31.23
Irrigation regime (I)	2	594.39**	18080769.7**	11139.57*	26033265.9**	734.58*
Error (a)	4	2.61	88760.41	641.35	523575.41	53.49
Anti-stress materials (R)	5	106.84**	825421.51**	1215.84	4054566.98**	9.18
I * R	10	4.57	32452.43	78.04	74126.93	13.08
Error (b)	30	15.11	54481.11	545.33	287129.16	13.58
CV%		3.26	9.99	8.84	11.00	4.25

ns, * and **: Not-significant and significant at 5% and 1% probability levels, respectively

Table 3. Mean comparison of traits under water deficit stress and priming and foliar application anti-stress materials

	Number of branches		Chlorophyll		
	Primary in	plant Fresh	a	Number of	Pod per
Treatments	plant	weight (g)	(mg gFW ⁻¹)	seed/plant	plant
Irrigation regime					
Optimal irrigation	26.55 ^a	66.93 ^a	4.03 ^a	45.21ª	51.58 ^a
Moderate water deficit	25.94ª	62.65 ^a	3.09 ^a	41.81 ^a	48.68 ^a
Severe water deficit	16.77 ^b	35.29 ^b	2.86 ^b	25.91 ^b	34.82 ^b
Anti-stress materials					
Commercial combination	25.00 ^a	60.21ª	3.99 ^a	41.14 ^a	50.62 ^a
proline	25.00 ^a	60.18 ^a	3.83 ^a	40.13 ^{ab}	50.27 ^a
Valine	24.55 ^a	57.88 ^{ab}	3.52 ^a	39.60 ^{ab}	47.46 ^{ab}
Alanine	24.44 ^a	57.08 ^{ab}	3.48 ^a	39.47 ^{ab}	47.14 ^{ab}
Distilled water	21.22 ^{ab}	50.16 ^{bc}	2.78 ^b	34.97 ^{bc}	40.40 ^{bc}
Control	18.33 ^b	44.22°	2.37 ^b	30.55°	34.88°

Table 3. Continued

	Densetiens of	Yield	1000 12	Biological	11
Treatments	Duration of ripening (day)	forage (kg ha ⁻¹)	1000 Kernal weight (g)	yield (kg ha ⁻¹)	Harvest index (%)
Irrigation regimes					
Optimal irrigation	123.28ª	2566.7ª	286.33ª	5800.6ª	55.68ª
Moderate water deficit	121.5 ^b	2472.9ª	269.00 ^a	5297.5ª	53.11ª
Severe water deficit	112.55 ^c	1965.8 ^b	237.27 ^b	3512.1 ^b	43.56 ^b
Anti-stress materials					
Commercial combination	124.11ª	2533.73ª	274.56 ^a	5299.2ª	51.14 ^a
Proline	121.66 ^{ab}	2596.7ª	273.89 ^a	5457.7ª	51.57ª
Valine	118.88 ^{bc}	2506.4ª	271.89 ^a	5257.9ª	51.40 ^a
Alanine	118.55 ^{bc}	2462.8ª	262.22 ^{ab}	5114.3ª	51.12ª
Distilled water	117.22 ^{cd}	2049.4 ^b	257.67 ^{ab}	4322.8 ^b	50.64 ^a
Control	114.22 ^d	1862.2 ^b	245.0 ^b	3768.4°	48.82 ^a

Means with similar letters in each column, show non- significant difference according to LSD tests at 5% level.

Irrigation regime	Anti-stress materials	b محتوی کلروفیل Chlorophyll b (mg gFW ⁻¹)
0	Commercial combination	0.80 ^a
	Proline	0.64 ^b
Optimal	Valine	0.63 ^{bc}
irrigation	Alanine	0.62 ^{bc}
	Distilled water	0.62 ^{bc}
	Control	0.57 ^{bcd}
	Commercial combination	0.58 ^{bcd}
	Proline	0.57 ^{bcd}
Moderate	Valine	0.56 ^{bcd}
water deficit	Alanine	0.55 ^{bcd}
uencit	Distilled water	0.54 ^{bcd}
	Control	0.51 ^{cde}
	commercial combination	0.51 ^{cde}
C	Proline	0.46 ^{def}
Severe water deficit	Valine	0.38^{efg}
	Alanine	0.34^{fgh}
utitit	Distilled water	0.27 ^{gh}
	Control	0.24 ^h

Table 4. Mean comparison for the interaction effect water deficit stress and priming and foliar application Anti-stress materials on content Chlorophyll b

The means with similar letters in column, show non-significant difference according to LSD tests at 5% level