تأثیر پرایمینگ بذور با کیفیت‏های مختلف توسط ملاتونین بر ویژگی‏های سبز شدن و رشد گیاهچه‏ گلرنگ (.Carthamus tinctorius L) تحت تنش مرکب شوری وخشکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زراعت، گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان، دانشگاه تهران

2 دانشیار، گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان، دانشگاه تهران

3 استادیار، گروه علوم زراعی و اصلاح نباتات، پردیس ابوریحان، دانشگاه تهران

4 دانشیار، گروه زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه شاهد

چکیده

به‏ منظور بررسی تأثیر پرایمینگ بذور زوال یافته طبیعی با ماده ملاتونین بر سبز شدن و خصوصیات رشدی گیاهچه گلرنگ، آزمایشی در سال زراعی 96-1395 در آزمایشگاه تکنولوژی بذر، گلخانه و مزرعه پژوهشی پردیس ابوریحان دانشگاه تهران انجام گرفت. هر سه آزمایش به صورت فاکتوریل در قالب طرح کاملا تصادفی (آزمایشگاه) و طرح بلوک‏های کامل تصادفی (مزرعه و گلخانه ) در 4 تکرار، انجام گرفتند. تیمارهای اصلی که در هر سه آزمایش مشترک هستند عبارت بودند از کیفیت بذر (1-بذور زوال یافته طبیعی و 2-بذور جدید) و پرایمینگ بذر (1- عدم کاربرد پرایمینگ بذر 2-هیدروپرایمینگ 3- پرایمینگ با ملاتونین 0.1 میلی مولار 4- پرایمینگ با ملاتونین 0.5 میلی مولار). نتایج این آزمایش نشان داد که تحت شرایط مزرعه، در بذور زوال‏یافته طبیعی، بیشترین درصد سبز شدن با استفاده از هیدروپرایمینگ و ملاتونین در غلظت 0.1 میلی مولار به ترتیب با 54.50 و 57.50 درصد حاصل شد که در مقایسه با شاهد، به ترتیب 39.74 و 47 درصد افزایش نشان دادند. همچنین نتایج نشان داد در شرایط گلخانه تحت تنش خشکی، بیشترین درصد سبز شدن متعلق به پرایمینگ با ملاتونین در غلظت 0.1 میلی مولار بود که در مقایسه با شاهد، درصد ظهور گیاهچه را تا 154 درصد افزایش داد. نتایج این آزمایش نشان داد که در شرایط شوری و ترکیب تنش شوری و خشکی نیز بیشترین سرعت و مقدار سبزشدن با پرایمینگ با ملاتونین در غلظت 0.1 میلی مولار حاصل شد اما غلظت بیشتر ملاتونین باعث کاهش سرعت سبز شدن شد. به‏ طور‏کلی، استفاده از روش مقرون به صرفه پرایمینگ بذر و همچنین هیدروپرایمینگ و پرایمینگ با ماده ملاتونین، می‏تواند کیفیت بذور را جهت رشد در شرایط خشکی و شوری، افزایش دهد.

کلیدواژه‌ها


 

Arnao, M.B., Hernandez-Ruiz, J., 2014. Melatonin: plant growth regulator and/or biostimulator during stress? Trends in Plant Science.19, 789-797.

Arnao, M.B., Hernandez-Ruiz, J., 2015. Functions of Melatonin in Plants: a review. Journal of Pineal Research. 59,133-150.

Basra, S.M.A., Ahmad, N., Khan, M.M., Iqbal, N., Cheema, M.A., 2003. Assessment of cottonseed deterioration during accelerated ageing. Seed Science and Technology. 31, 531-540.

Bose, J., Rodrigo-Moreno, A., Shabala, S., 2014. ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany. 65, 1241-1257.

Butler, L.H., Hay, F.R., Ellis, R.H., Smith, R.D., Murray, T.B., 2009. Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Annals of Botany. 103, 1261-1270.

Chaves, M.M., Maroco, J.P., Pereira, J.S., 2003. Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology. 89, 51-59.

Chiu, K.Y., Chen, C.L., Sung, J.M., 2002. Effect of priming temperature on storability of primed sh-2-sweet corn seed. Crop Science. 42, 1993-2003.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development. 29, 185-212.

Gallardo, K., Job, C., Groot, S.P.C., Puype, M., Demol, H., Vandekerckhove, J., Job, D., 2002. Proteomics of Arabidopsis seed germination and priming. In: Nicholas, G., Bradford, K.J., Côme, D., Pritchard, H.W. (eds.). The biology of seeds: recent advances. Cambridge, CABI, pp. 199-209.

Hussain, M.I., Lyra, D.A., Farooq, M., Nikoloudakis, N., Khalid, N., 2016. Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development. 36, 4.

Ibrahim, E.A., 2016. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology. 192, 38-46.

Jiang, C., Cui, Q., Feng, K., Xu, D., Li, C., Zheng, Q., 2016. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiologiae Plantarum. 38, 82.

Khajehpour, M., 2005. Industrial crop production. Isfahan Technology University, Jehad daneshgahi press. 580p. [In Persian].

Kiani-Pouya, A., 2015. Changes in activities of antioxidant enzymes and photosynthetic attributes in triticale (Triticosecale Wittmack) genotypes in response to long-term salt stress at two distinct growth stages. Acta Physiologiae Plantarum. 37, 72.

Larsen, S.U., Bailly, C., Côme, D., Corbineau, F., 2004. Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination of three grass species. Seed Science Research. 14, 35-50.

Liu, G., Marshall, P.D., Li, Y., Klassen, W., 2012. Increased oxygen bioavailability improved vigor and germination of aged vegetable seeds. Hortscience. 47, 1714–1721.

Maas, E.V., 1986. Salt tolerance of plants. Applied Agricultural Research. 1, 12–26.

Merewitz, E., 2016. Chemical Priming-Induced Drought Stress Tolerance in Plants. In: Hossain, M.A., Wani, S.H., Bhattacharjee, S., Burritt, D.J., Tran, L.S.P. (eds.), Drought Stress Tolerance in Plants, Vol 1, pp 77-103.

Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 7, 405-410.

Murch, S.J., Saxena, P.K., 2002. Melatonin: a potential regulator of plant growth and development? In Vitro Cellular and Developmental Biology. 38, 531-536.

Nawaz, A., Farooq, M., Ahmad, R., Basra, S. M. A., Lal, R., 2016. Seed priming improves stand establishment and productivity of no till wheat grown after direct seeded aerobic and transplanted flooded rice. European Journal of Agronomy. 76, 130-137.

Nxele, X., Klein, A., Ndimba, B.K. 2017. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany. 108, 261-266.

Paparella, S., Araujo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D., Balestrazzi, A., 2015. Seed priming: state of the art and new perspectives. Plant Cell Reports. 34, 1281-1293.

Paredes, S.D., Korkmaz, A., Manchester, L.C., Tan, D. X., Reiter, R. J., 2009. Phytomelatonin: a review. Journal of Experimental Botany. 60, 57-69.

Posmyk, M. M., Janas, K. M., 2009. Melatonin in plants. Acta Physiologiae Plantarum. 31, 1-11.

Savvides A., Ali S., Tester M., Fotopoulos V., 2016. Chemical priming of plants against multiple abiotic stresses: mission possible? Trends in Plant Science. 21, 329-340.

Saxton, K.E., Rawls, W.J., Romberger, J.S., Papendick, R.I., 1986. Estimation generalized soil water characteristics from texture. Soil Science Society of America Journal. 50, 1031–1036.

Shanker, A.K., Maheswari, M., Yadav, S.K., Desai, S., Bhanu, D., Attal, N.B., Venkateswarlu, B., 2014. Drought stress responses in crops. Functional and Integrative Genomics. 14, 11-22.

Soltani, E, Galeshi, S, Kamkar, B., Akramghaderi, F., 2009. The effect of seed aging on seedling growth as affected by environmental factors in wheat. Research Journal of Environmental Sciences. 3, 184-192.

Soltani, E., Ghaderi-Far, F., Baskin, C.C., Baskin, J.M., 2015. Problems with using mean germination time to calculate rate of seed germination. Australian Journal of Botany. 63, 631-635.

Soltani, E., Soltani, A., 2015. Meta-analysis of seed priming effects on seed germination, seedling emergence and crop yield: Iranian studies. International Journal of Plant Production. 9, 413-432.

Soltani, E., Soltani, A., Oveisi, M., 2014. Modeling seed aging effect on wheat seedling emergence in drought stress: optimizing Germin program to predict emergence pattern. Journal of Crops Improvement.15, 147-160. [In Persian with English summary].

Soltani, E., Adeli, R., Akbari, GH. A., Ramshini, H., 2017. Application of hydrotime model to predict early vigour of rapeseed (Brassica napus L.) under abiotic stresses. Acta Physiologiae Plantarum. 39, 252.

Sun, Y., Wang, H., Liu, S., Peng, X., 2016. Exogenous application of hydrogen peroxide alleviates drought stress in cucumber seedlings. South African Journal of Botany. 106, 23-28.

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., Mittler, R., 2014. Abiotic and biotic stress combinations. New Phytologist. 203, 32–43.

U. S. Salinity Laboratory Staff., 1954.Diagnosis and improvement ofsaline and alkali soils. USDA Handbook 60, US Gov. Print.Office, Washington, D.C.

Wei, P., Chen, D., Jing, R., Zhao, C., Yu, B., 2015a. Ameliorative effects of foliar methanol spraying on salt injury to soybean seedlings differing in salt tolerance. Plant Growth Regulation. 75, 133-141.

Wei, W., Li, Q.T., Chu, Y. N., Reiter, R. J., Yu, X. M., Zhu, D. H., Zhang, W. K., Ma, B., Lin, Q., Zhang, J. S., Chen, S.Y., 2015b. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany. 66(3), 695–707.

Wojtyla L., Lechowska K., Kubala S., Garnczarska M., 2016. Molecular processes induced in primed seeds-increasing the potential to stabilize crop yields under drought conditions. Journal of Plant Physiology. 203, 116-126.

Ye, J., Wang, S., Deng, X., Yin, L., Xiong, B., Wang, X., 2016. Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiologiae Plantarum. 38, 48.

Yeilaghi, H., Arzani, A., Ghaderian, M., Fotovat, R., Feizi, M., Pourdad, S. S., 2012. Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chemistry. 130, 618-625.

Yousuf, P. Y., Ahmad, A., Ganie, A. H., Sareer, O., Krishnapriya, V., Aref, I. M., Iqbal, M., 2017. Antioxidant response and proteomic modulations in Indian mustard grown under salt stress. Plant Growth Regulation. 8, 356.

Zaoui, S., Gautier, H., Bancel, D., Chaabani, G., Wasli, H., Lachaâl, M., Karray-Bouraoui, N., 2016. Antioxidant pool optimization in Carthamus tinctorius L. leaves under different NaCl levels and treatment durations. Acta Physiologiae Plantarum. 38, 187.

Zhang, L., Zhang, L., Sun, J., Zhang, Z., Ren, H., Sui, X., 2013. Rubisco gene expression and photosynthetic characteristics of cucumber seedlings in response to water deficit. Scientia Horticulturae. 161, 81-87.

Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., Guo, Y. D., 2015. Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany. 66, 647-656.

Zhang, N., Zhang, H. J., Sun, Q. Q., Cao, Y. Y., Li, X., Zhao, B., Wu, P., Guo, Y. D., 2017. Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production. Scientific Reports.v7, 503.